Considering the high contents of minerals and the potential health risk of mineral dusts to human and the environment, this paper was aimed to figure out the toxic effect and mechanism of four common mineral particles (quartz, albite, sericite, and montmorillonite). Cytotoxicity assays for cell viability (MTT assay), membrane integrity (LDH assay), oxidative stress (HO assay) and inflammatory cytokines (TNF-α and IL-6 assay) were applied. The results showed the influence of these mineral particles on A549 cell viability followed the order of momtmorillonite > cericite≥quartz > albite. There was no obvious relation between cell viability and the content of SiO, however, good linear correlation with the content of iron, and the cytotoxicity of mineral dusts was strengthened with increasing iron content. Mineral dusts generated HO in cell or cell-free systems. In particular, HO exhibited a linear correlation with the iron content, which meant that iron in the mineral dusts played an important role in the generation of reactive radical. Among those samples, oxidative stress induced by montmorillonite was distinctly stronger, while there was negligible influence induced by quartz and albite. Besides, all the tested samples induced damage to A549 cell membrane, and triggered the release of TNF-α or IL-6, but differed by the kinds of mineral dusts. In conclusion, composition and structure directly affected, but were not the only factors that contributed to the biological activity of mineral dusts, the evaluation of cell viability, membrane damage, free radicals and inflammatory reaction induced by mineral dusts should take the external morphology, surface active groups, solubility, adsorption and ion exchange properties into consideration.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201603169DOI Listing

Publication Analysis

Top Keywords

mineral dusts
32
cell viability
16
mineral
10
dusts
8
mineral particles
8
quartz albite
8
oxidative stress
8
tnf-α il-6
8
a549 cell
8
linear correlation
8

Similar Publications

Utilization of Low-Rank Coal and Zn-Bearing Dusts for Preparation of K, Na-Embedded Porous Carbon Material and Metallized Pellets by Synergistic Activation and Reduction Process.

Materials (Basel)

November 2024

State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

A technology was developed for managing Zn-bearing dust, facilitating the recycling of hazardous solid waste and the production of porous carbon materials. In the one-step process, Zn-bearing dusts were employed not only as raw materials to prepare reduced Zn-bearing dust pellets but also as activators to prepare K, Na-embedded activated carbon. In the process, the Fe, C, Zn, K, and Na in the dusts were rationally utilized.

View Article and Find Full Text PDF

Short- and long-term pathologic responses to quartz are induced by nearly free silanols formed during crystal fracturing.

Part Fibre Toxicol

December 2024

Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.

Article Synopsis
  • - The inhalation of respirable crystalline silica, particularly quartz, is linked to serious health issues like lung inflammation, fibrosis, cancer, and autoimmune diseases, with nearly free silanols (NFS) from fractured quartz being key players in this toxicity.
  • - Experiments on mice showed that exposure to NFS-rich quartz caused significant acute and long-term inflammatory responses, fibrosis, cancer, and autoimmune signs, while NFS-poor quartz showed no such effects.
  • - The study highlights that NFS-rich quartz specifically triggers harmful biological responses, including increased pro-inflammatory cytokines, lung fibrosis markers, tumors, and autoantibodies, underscoring its health risks compared to less reactive quartz forms.
View Article and Find Full Text PDF

Exposure to respirable silica contributes to lower airway inflammation in asthmatic horses.

J Vet Intern Med

November 2024

Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, Turin 10095, Italy.

Background: Respirable mineral particles can induce lower airway inflammation, but the role they play in asthma of horses is unknown.

Objectives: Respirable mineral particles, particularly respirable silica, are an overlooked determinant of chronic lung inflammation (asthma) in horses.

Animals: Twenty-three horses from an equine hospital population: 11 moderately affected (MEA), 7 severely asthmatic (SEA), and 5 control horses free from respiratory clinical signs.

View Article and Find Full Text PDF

Multi-omics inhalation toxicity assessment of urban soil dusts contaminated by multiple legacy sources of lead (Pb).

J Hazard Mater

December 2024

Human Toxicology Program, Graduate College, University of Iowa, Iowa City, Iowa, USA; Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, USA. Electronic address:

Although animal studies have evaluated lead (Pb) toxicity, they are limited to soluble forms, such as Pb-acetate, which do not reflect the range found in the exposome. Recent studies on Pb speciation of residential soils in urban areas revealed that the initial Pb sources are not persistent and are extensively repartitioned into adsorbed forms of Pb rather than insoluble phosphates. We investigated the inhalation and neurological toxicity of dusts generated from a surficial soil sample collected from a residential site with an exposomic mixture of various Pb species, both adsorbed phases (Fe and Mn oxide, humate bound Pb) and mineral phases (Pb hydroxycarbonate, pyromorphite, galena).

View Article and Find Full Text PDF

Oceanic suspended particulate matter (SPM) plays important roles in the coupling of climate and biogeochemical cycles via ocean-atmosphere interactions. However, methods for quantifying the properties of SPM in seawater have not yet been well established. Here we present the application of the recently developed complex amplitude sensor (CAS) for analyzing the complex forward-scattering amplitude of individual SPM (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!