[Characteristics of Water Extractable Organic Nitrogen from Erhai Lake Sediment and Its Differences with Other Sources].

Huan Jing Ke Xue

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

Published: July 2017

The 47 samples from Erhai Lake surface sediments were collected in different seasons. The distribution and structure characteristics of sediment water extractable organic nitrogen(WEON) were investigated by using the combined techniques of UV-Vis absorption and three-dimensional excitation-emission matrix spectra(3DEEMs). The differences in DON of various sources(overlying water, pore water, inflow Rivers and wet deposition) were explored to analyze its effects on sediment. The results showed that:1the temporal distribution followed the pattern of summer > spring > autumn > winter, with the spatial WEON distribution of northern > southern > central. 2 The humic degree of Erhai sediment WEON was relatively high and mostly composed of fulvic acid, which mainly contained UV-like humic-like fluorescence peak A and high-excited tryptophan fluorescence peak B. This indicated that it was mainly affected by terrestrial input and microbial activity. 3 There were two fluorescent components(C1, C2) in the sediments and other sources of Erhai Lake. The component C1 was the endogenous visible ultraviolet peak formed by biodegradation, while the component C2 was the tryptophan peak. The bioavailability of wet deposition samples was comparatively high, greatly impacting Erhai Lake in heavy rainfall. The DON bioavailability in the inflow river was the lowest, which was prone to be accumulated in sediments. 4The DON component C1 and C2 in overlying water had significant negative correlation with Erhai sediment WEON contents(=-0.79, <0.01;=-0.944, <0.01). This suggested that the overlying water DON components could indirectly reflect the sediment WEON content of Erhai Lake, namely the higher the fluorescence components C1 and C2 in overlying water DON were, the lower the sediment WEON content was.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201612058DOI Listing

Publication Analysis

Top Keywords

erhai lake
16
water extractable
8
extractable organic
8
wet deposition
8
erhai sediment
8
sediment weon
8
fluorescence peak
8
erhai
6
sediment
5
[characteristics water
4

Similar Publications

Closed-Loop Upcycling of Waste Nylon Plastic under Hydrothermal Clean Water Atmosphere.

Environ Sci Technol

December 2024

School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

The extensive use and longevity of nylon plastics pose substantial challenges for plastic management, recycling, and pollution control. Depolymerization and monomer recycling are potential solutions for valorizing waste plastics, but they often rely on complex and costly catalysts. Additionally, various additives in nylon plastics can negatively impact the catalyst efficiency.

View Article and Find Full Text PDF

Seasonal hydrological variation impacts nitrogen speciation and enhances bioavailability in plateau lake sediments.

Water Res

December 2024

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, PR China; Shanghai Jiao Tong University Yunnan Dali Research Institute, Dali, 671000, PR China. Electronic address:

Global warming has intensified the distinction between dry and wet seasons in monsoonal climates. The synergistic effect of high temperatures and rainfall during the wet season promotes the release of endogenous nitrogen (N) and eutrophication within lake ecosystems. However, the seasonal variations in sediments N speciation and bioavailability, and their intrinsic connection to release potential, remain unclear.

View Article and Find Full Text PDF

Weak interaction strategy enables enhanced selectivity and reusability of arginine-functionalized imprinted aerogel for phosphate adsorption.

Bioresour Technol

December 2024

School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, Shanghai, PR China; School of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, PR China.

Article Synopsis
  • A novel arginine-functionalized imprinted aerogel (AFIA-1:4) was developed to improve phosphate adsorption from eutrophic waters by balancing binding energy, enhancing both selectivity and reusability.
  • AFIA-1:4 demonstrated a high adsorption capacity of 40.65 mg/g, rapid kinetics within 15 minutes, and effective performance across a wide pH range (3-11).
  • After 10 reuse cycles, it maintained a remarkable 98.15% regeneration rate and 99.14% phosphate desorption, indicating its potential for sustainable eutrophication management.
View Article and Find Full Text PDF

Unsupervised learning for lake underwater vegetation classification: Constructing high-precision, large-scale aquatic ecological datasets.

Sci Total Environ

December 2024

School of Engineering, Dali University, Yunnan 671003, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671006, China.; Air-Space-Ground Integrated Intelligence and Big Data Application Engineering Research Center of Yunnan Provincial Department of Education, Yunnan 671003, China. Electronic address:

Article Synopsis
  • * Supervised AI techniques can identify vegetation but rely on labeled datasets that are costly and time-consuming to create, leading to issues with accuracy when applied to new environments.
  • * This study introduces an unsupervised classification method that significantly reduces the need for manual annotation, achieving high accuracy in identifying underwater vegetation while utilizing innovative techniques like dimensionality reduction and a voting mechanism, making it more efficient and scalable.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!