Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
MIL-88A@MIP was fabricated for the first time in this experiment with a metal-organic framework of MIL-88A as the precursor based on the molecular imprinting method. It was characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), energy dispersive spectrometer (EDS), and N adsorption. The catalytic performance of MIL-88A@MIP was tested to activate persulfate (PS) to generate SO for the degradation of dibutyl phthalate (DBP), which was used as a target pollutant. Compared with the precursor MIL-88A, the catalytic activity of MIL-88A@MIP was improved effectively through targeted modification, and the DBP removal rate increased 80.4% after reacting for 480 min. An experiment determining the influencing factors showed that the optimum activation condition of the catalyst was PS:DBP=600:1, MIL-88A@MIP dosage of 0.5 g·L,and pH=3.26. Furthermore, MIL-88A@MIP shows a high capability of removing different phthalic acid ester (PAE) contaminants that reflect its targeting selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201704004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!