A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Comparison of the Persistence of a Combined Amendment Stabilizing Pb, Cd, Cu and Zn in Polluted Paddy Soil]. | LitMetric

A three-year in-situ experiment was conducted in a paddy soil near a mining area in southern Hunan in order to study the persistence of combined amendment of limestone+sepiolite (marked as LS) stabilizing Pb, Cd, Cu and Zn in polluted paddy soil. LS with ratios of 0, 2, 4, and 8 g·kg was applied once to the paddy soil, and rice was subsequently planted for three consecutive years of 2012 (first season), 2013 (second season), and 2014 (third season). The experimental results indicated that:①LS significantly increased soil pH values for all three seasons, and the enhancement ranked as follows:first season > second season > third season. ② LS obviously decreased the exchangeable contents of soil Pb, Cd and Zn for all three seasons, and the decreasing magnitude of exchangeable contents of soil heavy metals was 32.6%-97.7% for Pb, 8.3%-71.4% for Cd, and 10.9%-83.5% for Zn, respectively, in the third season; however, there was no significant decrease for Cu. The effects of LS decreasing exchangeable contents of soil heavy metals in three seasons followed the order of Pb > Zn > Cd > Cu. ③ LS decreased contents of Pb and Cd in brown rice in the third season by 26.7%-66.7% and 59.1%-80.3%, respectively, and the reduction trend increased with increasing LS application. Cu and Zn contents in brown rice did not decrease effectively. The effect of LS reducing contents of Pb, Cd, Cu and Zn in brown rice followed the order of Pb > Cd > Cu > Zn for the first season and the second season, but Cd > Pb > Zn > Cu for the third season. For all three seasons, the total effect of LS reducing heavy metal contents in brown rice followed the order of Pb > Cd > Cu > Zn. ④ The effect of LS stabilizing soil Pb and Cd emerged gradually with time. Therefore, LS was suitable for remedying soil polluted with Pb and Cd for a relatively long time because of its persistence.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.2016.07.048DOI Listing

Publication Analysis

Top Keywords

third season
20
three seasons
16
contents brown
16
brown rice
16
paddy soil
12
second season
12
exchangeable contents
12
contents soil
12
season
11
soil
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!