[Nitrogen Removal Performance of Novel HABR Reactor over CANON Process].

Huan Jing Ke Xue

Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China.

Published: July 2016

The startup of novel hybrid anaerobic baffled reactor (HABR) and the feasibility of completely autotrophic nitrogen removal over nitrite (CANON) process were studied. The reactor was operated by gradually decreasing HRT to improve total nitrogen load. After startup, the change of nitrogen concentrations, conductivity, pH and MLSS was measured along the reactor, and then the microbial morphology and spatial structure of bacteria were defined. The test results indicated several points:under the experimental condition of an average NH-N of 40 mg·L in influent, the quick start-up process was successfully achieved by continuous operation within 89 days, and stabilized over 187 days. The average NH-N and TN concentrations of effluent were below 2 mg·L and 10 mg·L respectively, the average removal efficiencies of NH-N and TN reached above 96% and 83% respectively, and a NRR of 0.15 kg·(m·d) was obtained. During the stable phase, the concentrations of NH-N and TN gradually declined along the reactor, while the concentrations of NO-N and NO-N remained constant at relatively lower values. The highest nitrogen removal efficiency of ammonia occurred in compartment 1, and the reason was confirmed by SEM and FISH microbiological analysis that enriched functional bacteria of AOB and AnAOB coexisted in compartment 1.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.2016.07.029DOI Listing

Publication Analysis

Top Keywords

nitrogen removal
8
average nh-n
8
reactor
5
[nitrogen removal
4
removal performance
4
performance novel
4
novel habr
4
habr reactor
4
reactor canon
4
canon process]
4

Similar Publications

Biotic factors shape the structure and dynamics of denitrifying communities within cyanobacterial aggregates.

Environ Res

January 2025

Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; Center for Global Change and Ecological Forecasting, Institute of Eco-Chongming, Shanghai, China. Electronic address:

Eutrophication caused by human activities has severely impacted freshwater ecosystems, leading to harmful cyanobacterial blooms that threaten water quality and ecosystem stability. During blooms, denitrification is a key process for nitrogen removal, which can occur both in the sediment and in the waterbody mediated by cyanobacterial aggregate (CA)-associated microorganisms. In this study, the structure, dynamics and assembly mechanisms of CA-associated nirK-, nirS-, and nosZ-encoding denitrifying communities were investigated in the eutrophic Lake Taihu across the bloom season.

View Article and Find Full Text PDF

Microalgal-based urea wastewater treatment with p-Hydroxybenzoic acid enhances resource recovery and mitigates biological risks from Bisphenol A.

Water Res

January 2025

Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, PR China; Chongqing Research Institute, Jilin University, 401120 Chongqing, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, PR China. Electronic address:

Efficient nutrient recovery from source-separated urine is vital for wastewater treatment, with microalgae as a promising solution. However, bisphenol A (BPA) in urine can hinder microalgal resource recovery and pose water quality risks. The role of plant hormones in enhancing microalgal growth and pollutant removal is known, but their impact on BPA-laden urine treatment is not well-studied.

View Article and Find Full Text PDF

Background: The prevalence of chronic kidney disease (CKD) is estimated to be about 13.4% worldwide. Studies have shown that CKD accounts for up to 2% of the health cost burden.

View Article and Find Full Text PDF

Inorganic bioelectric system for nitrate removal with low NO production at cold temperatures of 4 and 10 °C.

Water Res

December 2024

Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, 2800 Kgs, Lyngby, Denmark. Electronic address:

Groundwater, essential for ecological stability and freshwater supply, faces escalating nitrate contamination. Traditional biological methods struggle with organic carbon scarcity and low temperatures, leading to an urgent need to explore efficient approaches for groundwater remediation. In this work, we proposed an inorganic bioelectric system designed to confront these challenges.

View Article and Find Full Text PDF

High-entropy alloy nanoparticles (HEA-NPs) exhibit favorable properties in catalytic processes, as their multi-metallic sites ensure both high intrinsic activity and atomic efficiency. However, controlled synthesis of uniform multi-metallic ensembles at the atomic level remains challenging. This study successfully loads HEA-NPs onto a nitrogen-doped carbon carrier (HEAs) and pioneers the application in peroxymonosulfate (PMS) activation to drive Fenton-like oxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!