There is a considerable consensus that the increased production and/or aggregation of α-synuclein (αsyn) plays a central role in the pathogenesis of Parkinson's disease (PD). Therefore, a method of identifying molecules that block αsyn aggregation and prevent the loss of dopaminergic neurons is urgently needed in order to treat or slow the progression of PD. Hydroxytyrosol (HT), a well-known bioactive food compound present in olive oil, olives and wine, possesses demonstrated antioxidant and anti-inflammatory properties that can cross the Blood Brain Barrier (BBB). In the present work, the role of HT, tyrosol (TYR) and other tyrosine metabolites (hydroxyphenyl acetic acid (HPAA)) against αsyn aggregation, destabilisation and toxicity was evaluated through the use of different in vitro tests (Thioflavin T (ThT), Transmission Electronic Microscopy (TEM), electrophoresis and MTT assay). Results show that HT presents a strong inhibitory effect preventing αsyn aggregation and exercising a destabilising effect by disaggregating αsyn fibrils. Moreover, HT is able to counteract αsyn-induced toxicity. This is the first time that the effect of HT against αsyn toxicity and aggregation is evaluated. Thus, HT can be considered a promising compound for further approaches to tackling PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2018.06.059 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!