Mars' surface bears the imprint of valley networks formed billions of years ago. Whether these networks were formed by groundwater sapping, ice melt, or fluvial runoff has been debated for decades. These different scenarios have profoundly different implications for Mars' climatic history and thus for its habitability in the distant past. Recent studies on Earth revealed that valley networks in arid landscapes with more surface runoff branch at narrower angles, while in humid environments with more groundwater flow, branching angles are much wider. We find that valley networks on Mars generally tend to branch at narrow angles similar to those found in arid landscapes on Earth. This result supports the inference that Mars once had an active hydrologic cycle and that Mars' valley networks were formed primarily by overland flow erosion, with groundwater seepage playing only a minor role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021146PMC
http://dx.doi.org/10.1126/sciadv.aar6692DOI Listing

Publication Analysis

Top Keywords

valley networks
20
networks formed
12
networks mars
8
arid landscapes
8
networks
6
valley
5
branching geometry
4
geometry valley
4
mars earth
4
earth implications
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!