AI Article Synopsis

  • The study evaluated the accuracy of linear measurements from 3D images produced by cone-beam computed tomography (CBCT) and facial scanning systems.
  • Using an anthropomorphic phantom with 13 anatomical landmarks, researchers compared direct measurements with those obtained from the 3D images to assess measurement accuracy.
  • Results showed good reproducibility in measurements, although some 3D facial scans differed significantly from direct measurements, indicating that optimizing scanning parameters is vital for image quality in clinical applications.

Article Abstract

Purpose: This study was conducted to evaluate the accuracy of linear measurements of 3-dimensional (3D) images generated by cone-beam computed tomography (CBCT) and facial scanning systems, and to assess the effect of scanning parameters, such as CBCT exposure settings, on image quality.

Materials And Methods: CBCT and facial scanning images of an anthropomorphic phantom showing 13 soft-tissue anatomical landmarks were used in the study. The distances between the anatomical landmarks on the phantom were measured to obtain a reference for evaluating the accuracy of the 3D facial soft-tissue images. The distances between the 3D image landmarks were measured using a 3D distance measurement tool. The effect of scanning parameters on CBCT image quality was evaluated by visually comparing images acquired under different exposure conditions, but at a constant threshold.

Results: Comparison of the repeated direct phantom and image-based measurements revealed good reproducibility. There were no significant differences between the direct phantom and image-based measurements of the CBCT surface volume-rendered images. Five of the 15 measurements of the 3D facial scans were found to be significantly different from their corresponding direct phantom measurements (<.05). The quality of the CBCT surface volume-rendered images acquired at a constant threshold varied across different exposure conditions.

Conclusion: These results proved that existing 3D imaging techniques were satisfactorily accurate for clinical applications, and that optimizing the variables that affected image quality, such as the exposure parameters, was critical for image acquisition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015926PMC
http://dx.doi.org/10.5624/isd.2018.48.2.111DOI Listing

Publication Analysis

Top Keywords

facial scanning
12
direct phantom
12
cone-beam computed
8
computed tomography
8
anthropomorphic phantom
8
cbct facial
8
scanning parameters
8
parameters cbct
8
anatomical landmarks
8
phantom image-based
8

Similar Publications

Comparing analog and 3D measurements of vertical dimension in edentulous subjects.

J Dent

January 2025

Clinic of General-, Special Care- and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland; School of Dentistry, Federal University of Goiàs, Goiania, Brazil; Department of Reconstructive Dentistry, Division of Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.

Objective: This study aimed to explore the feasibility and reliability of measuring the vertical dimension of occlusion/rest (OVD/RVD) on 3D facial scans of edentulous patients.

Methods: Nineteen edentulous participants rehabilitated with complete removable dental prostheses (CDs) participated in this study. Analog measurements (control) were obtained directly on the face for each participant with the jaws positioned at the rest position (without CDs, RVD) and at central occlusion (OVD), between the facial landmarks: Glabella (G) and Soft Pogonion (SP), Pronasale (PN) and SP, and Subnasale (SN) and SP.

View Article and Find Full Text PDF

Objectives: To investigate the influence of different facial scanners and integration approaches on the accuracy of virtual dental patients (VDPs).

Methods: Forty VDPs were generated using a head mannequin and two facial scanners: 1) an industrial scanner and 2) a smartphone scanner. For each scanner, two integration methods were applied: 1) integration by virtual facebow scan and 2) integration by nose-teeth scan.

View Article and Find Full Text PDF

Volume electron microscopy (vEM) enables biologists to visualize nanoscale 3D ultrastructure of entire eukaryotic cells and tissues prepared by heavy atom staining and plastic embedding. The highest resolution vEM technique is focused ion-beam scanning electron microscopy (FIB-SEM), which provides nearly isotropic (~5-10 nm) spatial resolution at fluences of > 10,000 e /nm . However, it is not clear how such high resolution is achievable because serial block-face (SBF) SEM, which incorporates an in-situ ultramicrotome instead of a Ga FIB beam, results in radiation-induced collapse of similar specimen blocks at fluences of only ~20 e /nm .

View Article and Find Full Text PDF

Background: The auricle, or auricula, defines the visible boundaries of the external ear and is essential in forensic investigations, including facial reconstruction and human remains identification. Beyond its forensic significance, auricular morphology attracts interest from various fields, such as medicine and industry. The size of the ears is culturally associated with health and longevity, while surgical techniques for ear reconstruction address both congenital and aesthetic concerns.

View Article and Find Full Text PDF

The amygdala plays a crucial role in various behavioral functions and psychiatric conditions, with its morphology showing alterations in sleep disorders. While the impact of chronic sleep disorders on amygdala morphology has been studied, the effects of acute sleep deprivation (ASD) remain largely unexplored. The present study aimed to investigate the modulation between amygdala sub-region volumes and spatial working memory (SWM) performance under ASD conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!