Bacterial diversity during in-vessel (rotary drum) composting of agricultural waste was characterized using NGS-based 16S rRNA sequencing for microbial identification. The activity of the bacteria was observed to vary with the composting materials and degradation pattern. Taxonomic hits distribution at domain level revealed that 89.5% sequences belonged to bacteria, 9% to eukaryota followed by 1.4% archaea during drum composting. The lowest common ancestor (LCA) classification plot showed the high abundance of the phylum proteobacteria followed by actinobacteria in compost sample. Taxonomic hit distribution at family level showed that compost sample was enriched with Thermomonosporaceae. is an aerobic, cellulolytic, thermophilic Gram-positive bacterium which produces a number of industrially important compounds, i.e., cellulase, alpha-amylase, and polygalacturonate lyase. family of bacteria play a major role in organic matter degradation during composting. Hence, in the present study species such as were identified from the compost mixture, which can utilize many organic compounds such as cellulose starch, xylose or pectin. The other biggest group in compost sample was Actinobacteria with as the most abundant species followed by . The compost was stabilized with higher volatile solids reduction, lower OUR (4.49 mg/g VS/day) and CO (2.28 mg/g VS/day) values at the end of 20 days. The final compost was observed with 2.31% of TKN and 4.3% of phosphorus. Finally the results indicate that degradation of agricultural waste using drum composter was dominated by Bacilli, γ, β-proteobacteria, and actinobacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023799PMC
http://dx.doi.org/10.1007/s13205-018-1319-7DOI Listing

Publication Analysis

Top Keywords

agricultural waste
12
compost sample
12
composting agricultural
8
16s rrna
8
rrna sequencing
8
drum composting
8
compost
6
composting
5
characterization bacterial
4
bacterial community
4

Similar Publications

Efficient Hg(Ⅱ) removed by l-cysteine modified UiO-66 through chemical adsorption via a facile partial ligand replacement strategy.

J Colloid Interface Sci

January 2025

College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000 PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095 PR China; Institutes of Agricultural Science and Technology Development, Yangzhou 225127 Jiangsu, PR China.

In this work, UiO-66-l-cys with enhanced adsorption capacity for Hg(Ⅱ) in water was synthesized through a facile two-step partial ligand replacement strategy. The presence of the functional groups significantly enhanced the capacity of the material for Hg(Ⅱ). According to the Langmuir model, the maximum theoretical adsorption capacity was calculated to be 1321.

View Article and Find Full Text PDF

Biochemical study and digestion profile of olive oil by LipBK: Revealing the potential applications of a new acid/broad thermal range true lipase.

Int J Biol Macromol

January 2025

Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil; Institute of Bioenergy Research (IPBEN), Jaboticabal, São Paulo, Brazil. Electronic address:

This study characterized a novel bacterial lipase with high biotechnological potential, focusing on industrial and environmental applications. Bacterial isolates were screened using olive oil as a substrate, and the strain with the highest hydrolytic halo was identified as Burkholderia sp. via 16S rRNA analysis.

View Article and Find Full Text PDF

Lignin reinforced eco-friendly and functional nanoarchitectonics materials with tailored interfacial barrier performance.

J Colloid Interface Sci

January 2025

State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:

Exploring innovative and sustainable routes for the production of biodegradable biomass-based materials is critical to promote a circular carbon economy and carbon neutrality goals. Fossil-based non-biodegradable plastic waste poses a nonnegligible threat to humans and the ecological environment, and biomass-based functional materials are becoming increasingly viable alternatives. Lignin, a naturally occurring macromolecular polymer, is green and renewable resource rich in aromatic rings, with biodegradability, biocompatibility, and excellent processability for eco-friendly composites.

View Article and Find Full Text PDF

The widespread reliance on single-use plastics (SUPs) has fostered a global throwaway culture, especially in the food packaging industry, where convenience and low cost have driven their adoption, posing serious environmental threats, particularly to marine ecosystems and biodiversity. Edible and ecofriendly packaging made from millet, specifically sorghum ( () Moench), is a promising solution to mitigate SUP consumption and promote sustainability. This study explores the development of edible sorghum bowls, enhanced through roasting and incorporating 3 g of hibiscus and rose flower powders.

View Article and Find Full Text PDF

An increasing amount of water pollution is being caused by an increase in industrial activity. Recently, a wide range of methods, including extraction, chemical coagulation, membrane separation, chemical precipitation, adsorption, and ion exchange, have been used to remove heavy metals from aqueous solutions. The adsorption technique is believed to be the most highly effective method for eliminating heavy metals from wastewater among all of them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!