Xanthan gum is an exo-polysaccharide industrially produced by fermentation using simple sugars. In this study, broomcorn stem was introduced as a low-cost- and widely available carbon source for xanthan gum fermentation. Broomcorn stem was hydrolyzed using sulphuric acid to liberate reducing sugar which was then used as a carbon source for biosynthesis of xanthan gum by . Effects of hydrolysis time (15, 30, 45 and 60 min), sulphuric acid concentration (2, 4, 6 and 8% v/v) and solid loading (3, 4, 5 and 6% w/v) on the yield of reducing sugar and consequent xanthan production were investigated. Maximum reducing sugar yield (55.2%) and xanthan concentration (8.9 g/L) were obtained from hydrolysis of 4% (w/v) broomcorn stem with 6% (v/v) sulphuric acid for 45 min. The fermentation product was identified and confirmed as xanthan gum using Fourier transform infrared spectroscopy analysis. Thermogrvimetric analysis showed that thermal stability of synthesized xanthan gum was similar to those reported in previous studies. The molecular weight of the produced xanthan (2.23 × 10 g/mol) was determined from the intrinsic viscosity. The pyruvate and acetyl contents in xanthan gum were 4.21 and 5.04%, respectively. The chemical composition results indicated that this biopolymer contained glucose, mannose and glucoronic acid with molecular ratio of 1.8:1.5:1.0. The kinetics of batch fermentation was also investigated. The kinetic parameters of the model were determined by fermentation results and evaluated. The results of this study are noteworthy for the sustainable xanthan gum production from low-value agricultural waste.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019652PMC
http://dx.doi.org/10.1007/s13205-018-1322-zDOI Listing

Publication Analysis

Top Keywords

xanthan gum
32
broomcorn stem
16
carbon source
12
sulphuric acid
12
reducing sugar
12
xanthan
11
gum production
8
source xanthan
8
gum
7
acid
5

Similar Publications

pH-responsive composite konjac glucomannan/xanthan gum film incorporated lysozyme fibril for the monitoring of chicken breast freshness.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China. Electronic address:

A pH responsive composite film was developed by incorporating cyanidin (CY) and egg white lysozyme fibril into konjac glucomannan (KGM) and xanthan gum (XG) matrix to monitor the chicken breast freshness in this work. The physicochemical properties of the films, especially pH sensitivity, evaluated by color difference and visual color change under different pH values, were first explored. The freshness changes of chicken breast sealed with the composite films were also analyzed.

View Article and Find Full Text PDF

Introduction: The rapid progress in polymer science has designed innovative materials for biomedical applications. In the case of drug design, for each new therapeutic agent, a drug delivery system (DDS) is required to improve its pharmacokinetic and pharmacodynamic parameters. Therefore, significant research has been carried out to develop drug delivery (DD) carriers for these new therapeutic agents.

View Article and Find Full Text PDF

Hypothesis: We hypothesise that superhydrophobic surfaces can achieve effective interfacial slip and drag reduction even under non-Newtonian, shear-thinning fluid flows. Unlike Newtonian fluids, where slip is primarily influenced by viscosity and surface tension, we anticipate that the shear-thinning nature of these fluids may enhance slip length and drag reduction.

Experiments And Numerical Analysis: The superhydrophobic surfaces used in this study, featuring a dual-scale random topography, were fabricated via a spray coating process, and low-concentration xanthan gum solutions (50-250 ppm) were used as model shear-thinning fluids of low elasticity.

View Article and Find Full Text PDF

Influence of Added Cellulose Nanocrystals on the Rheology of Polymers.

Nanomaterials (Basel)

January 2025

Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

The interactions between cellulose nanocrystals and six different polymers (three anionic, two non-ionic, and one cationic) were investigated using rheological measurements of aqueous solutions of nanocrystals and polymers. The experimental viscosity data could be described adequately by a power-law model. The variations in power-law parameters (consistency index and flow behavior index) with concentrations of nanocrystals and polymers were determined for different combinations of nanocrystals and polymers.

View Article and Find Full Text PDF

The amount of saturated fat in cookies can be reduced by replacing margarine with oleogel, resulting in healthier products. In this study, the rheological and textural profile of cookies formulated with oleogel as the main margarine substitute was evaluated. Hemp seed vegetable oil was oleogelized with four types of waxes: beeswax (BW), carnauba wax (CW), candelilla wax (DW), rice bran wax (RW), and three oleogeling agents, sitosterol (S), pea protein (PP), and xanthan gum (XG), respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!