Black rot disease in orchids is caused by the water mold . To gain better biocontrol performance, several factors affecting growth and antifungal substance production by RS1 were verified. These factors include type and pH of media, temperature, and time for antifungal production. The results showed that the best conditions for RS1 to produce the active compounds was cultivating the bacteria in Luria-Bertani medium at pH 7.0 for 21 h at 37 °C. The culture filtrate was subjected to stepwise ammonium sulfate precipitation. The precipitated proteins from the 40% to 80% fraction showed antifungal activity and were further purified by column chromatography. The eluted proteins from fractions 9-10 and 33-34 had the highest antifungal activity at about 75% and 82% inhibition, respectively. SDS-PAGE revealed that the 9-10 fraction contained mixed proteins with molecular weights of 54 kDa, 32 kDa, and 20 kDa, while the 33-34 fraction contained mixed proteins with molecular weights of 40 kDa, 32 kDa, and 29 kDa. Each band of the proteins was analyzed by LC/MS to identify the protein. The result from Spectrum Modeler indicated that these proteins were closed similarly to three groups of the following proteins; catalase, chitin binding protein, and protease. Morphological study under scanning electron microscopy demonstrated that the partially purified proteins from RS1 caused abnormal growth and hypha elongation in . The bacteria and/or these proteins may be useful for controlling black rot disease caused by in orchid orchards.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023258 | PMC |
http://dx.doi.org/10.1080/12298093.2018.1468055 | DOI Listing |
J Am Soc Nephrol
January 2025
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
Background: Cardiac surgery-associated acute kidney injury is a common serious complication after cardiac surgery. Currently, there are no specific pharmacological therapies. Our understanding of its pathophysiology remains preliminary.
View Article and Find Full Text PDFJCI Insight
January 2025
CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, University of Bordeaux, Bordeaux, France.
CD8+ T cells are critical for immune protection against severe COVID-19 during acute infection with SARS-CoV-2. However, the induction of antiviral CD8+ T cell responses varies substantially among infected people, and a better understanding of the mechanisms that underlie such immune heterogeneity is required for pandemic preparedness and risk stratification. In this study, we analyzed SARS-CoV-2-specific CD4+ and CD8+ T cell responses in relation to age, clinical status, and inflammation among patients infected primarily during the initial wave of the pandemic in France or Japan.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
Background: The 2019 Canada's Food Guide provides universal recommendations to individuals aged ≥2 years. However, the extent to which these recommendations are appropriate for older adults is unknown. Although ideal, conducting a large randomized controlled trial is unrealistic in the short term.
View Article and Find Full Text PDFAnn Med
December 2025
Department of General Practice, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China.
Background: Although existing studies have identified some genetic loci associated with chronic obstructive pulmonary disease (COPD) susceptibility, many variants remain to be discovered. The aim of this study was to further explore the potential relationship between single nucleotide polymorphisms (SNPs) and COPD risk.
Methods: Nine hundred and ninety-six subjects were recruited (498 COPD cases and 498 healthy controls).
J Am Chem Soc
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Kowloon 999077, China.
Heterogeneous ice nucleation is a widespread phenomenon in nature. Despite extensive research on ice nucleation near biological antifreeze proteins, a probe for ice nucleation and growth processes at the atomic level is still lacking. Herein, we present simulation evidence of the heterogeneous ice nucleation process on the ice-binding surface (IBS) of the antifreeze protein (TmAFP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!