MicroRNAs are small noncoding RNAs acting as novel biomarkers of various diseases and potential regulators of protein expression and functions. Syndecan-1 is the heparan sulfate proteoglycan associated with malignancy of various cancers, including breast cancer. In this study, we proposed a experimental workflow to investigate potential microRNAs that regulate SDC1 expression and affect breast cancer cell mobility. MicroRNA candidates were selected from available Gene Expression Omnibus datasets on breast malignancy. Further duplex hybridization and multiplex PCR approach were used to screen potential microRNAs. Analysis showed increased syndecan-1 expression but decreased miR-122-5p level upon breast malignancy. Western blot and luciferase assay confirmed the targeting of 3'-untranslated region of syndecan-1 and suppression of syndecan-1 expression by miR-122-5p. The suppression of syndecan-1 expression by miR-122-5p or shRNAs against syndecan-1 increased breast cancer cell mobility; while overexpression of syndecan-1 inhibited cell mobility. In further, miR-122-5p was enriched in liver cell-derived exosomes that was able to suppress syndecan-1 expression and increase cell mobility in breast cancer cells. In conclusion, our results suggested the downregulation of SDC1 by miR-122-5p or liver-cell-derived exosomes would enhance breast cancer cell mobility. Metastasis or mobility of breast cancer cells might be affected by circulating miR-122-5p and not directly correlated with progression of breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021336PMC
http://dx.doi.org/10.18632/oncotarget.25589DOI Listing

Publication Analysis

Top Keywords

breast cancer
32
syndecan-1 expression
20
cell mobility
20
potential micrornas
12
expression mir-122-5p
12
mobility breast
12
cancer cells
12
cancer cell
12
breast
10
syndecan-1
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!