Local and systemic metastasis is the main reason for the poor survival rate of patients with ovarian cancer (OC). MicroRNAs (miRNAs/miRs) are short non-coding RNAs that serve critical roles in the initiation and progression of OC. The present study demonstrated that expression of miR-19b was significantly increased in OC tissues and cell lines. Analysis of clinicopathological features revealed that the increased expression of miR-19b was associated with advanced International Federation of Gynecology and Obstetrics stage and lymphatic metastasis of OC patients. Loss-of-function experiments demonstrated that the silencing of miR-19b reduced the migration and invasion of OVCAR-3 cells; contrarily, the overexpression of miR-19b facilitated the migration and invasion of CAOV-3 cells. Furthermore, miR-19b regulated the expression of phosphatase and tensin homolog (PTEN) and the activity of the PTEN/RAC serine/threonine-protein kinase pathway . Notably, the results of dual-luciferase reporter assays indicated that PTEN was a direct downstream target of miR-19b in OC. Taken together, the results of the current study demonstrated that miR-19b serves an oncogenic role in the progression of OC, and could potentially act as a biomarker and therapeutic target for OC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019979PMC
http://dx.doi.org/10.3892/ol.2018.8695DOI Listing

Publication Analysis

Top Keywords

migration invasion
12
ovarian cancer
8
study demonstrated
8
expression mir-19b
8
mir-19b
7
microrna-19b promotes
4
promotes migration
4
invasion ovarian
4
cancer cells
4
cells inhibiting
4

Similar Publications

CPSF4-mediated regulation of alternative splicing of HMG20B facilitates the progression of triple-negative breast cancer.

J Transl Med

December 2024

Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China.

Background: Aberrant alternative splicing (AS) contributes to tumor progression. A crucial component of AS is cleavage and polyadenylation specificity factor 4 (CPSF4). It remains unclear whether CPSF4 plays a role in triple-negative breast cancer (TNBC) progression through AS regulation.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear.

View Article and Find Full Text PDF

Breast cancer (BRCA) is one of the pivotal causes of female death worldwide. And the morbidity and mortality of breast cancer have increased rapidly. Immune checkpoints are important to maintain immune tolerance and are regarded as important therapeutic targets.

View Article and Find Full Text PDF

Accurate and timely genetic material replication is essential for preserving genomic integrity. The replication process begins with chromatin licensing and DNA replication factor 1 (CDT1). It has been demonstrated that dysregulated CDT1 expression causes genomic instability, damages DNA, and may even cause cancer.

View Article and Find Full Text PDF

Constitutive androstane receptor (CAR) is a xenosensor that is almost exclusively expressed in the liver. Studies in rodents suggest an oncogenic role for CAR in liver cancer, but its role in human liver cancer is unclear. We aimed to investigate the functional roles of CAR in human liver cancer with a focus on the liver cancer stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!