Monitoring Algal Blooms in drinking water reservoirs using the Landsat 8 Operational Land Imager.

Int J Remote Sens

United States Environmental Protection Agency, Atlantic Ecology Division, Narragansett, Rhode Island 02882, USA.

Published: January 2018

In this study, we demonstrated that the Landsat-8 Operational Land Imager (OLI) sensor is a powerful tool that can provide periodic and system-wide information on the condition of drinking water reservoirs. The OLI is a multispectral radiometer (30 m spatial resolution) that allows ecosystem observations at spatial and temporal scales that allow the environmental community and water managers another means to monitor changes in water quality not feasible with field-based monitoring. Using the provisional Land Surface Reflectance (LSR) product and field-collected chlorophyll- (chl-) concentrations from drinking water monitoring programs in North Carolina and Rhode Island, we compared five established approaches for estimating chl- concentrations using spectral data. We found that using the 3 band reflectance approach with a combination of OLI spectral bands 1, 3, and 5, produced the most promising results for accurately estimating chl- concentrations in lakes ( value of 0.66; RMSE value of 8.9 μg l). Using this model, we forecast the spatial and temporal variability of chl- for Jordan Lake, a recreational and drinking water source in piedmont North Carolina and several small ponds that supply drinking water in southeastern Rhode Island.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020680PMC
http://dx.doi.org/10.1080/01431161.2018.1430912DOI Listing

Publication Analysis

Top Keywords

drinking water
20
chl- concentrations
12
water reservoirs
8
operational land
8
land imager
8
spatial temporal
8
north carolina
8
rhode island
8
estimating chl-
8
water
7

Similar Publications

Background: Evaluating individual health outcomes does not capture co-morbidities children experience.

Purpose: We aimed to describe profiles of child neurodevelopment and anthropometry and identify their predictors.

Methods: Using data from 501 mother-child pairs (age 3-years) in the Maternal-Infant Research on Environmental Chemicals (MIREC) Study, a prospective cohort study, we developed phenotypic profiles by applying latent profile analysis to twelve neurodevelopmental and anthropometric traits.

View Article and Find Full Text PDF

Background: Few studies have investigated associations between per- and polyfluoroalkyl substances (PFAS) and childhood cancers. Detectable levels of PFAS in California water districts were reported in the Third Unregulated Contaminant Monitoring Rule for 2013-2015.

Methods: Geocoded residences at birth were linked to corresponding water district boundaries for 10,220 California-born children (aged 0-15 years) diagnosed with cancers (2000-2015) and 29,974 healthy controls.

View Article and Find Full Text PDF

Selective Removal of Highly Toxic Selenite by a Biobased Zirconium-Polyphenolic Supramolecular Gel.

Inorg Chem

January 2025

State Key Laboratory of Tea Biology and Utilization, Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China.

The green and facile biobased functional materials have attracted great attention due to the promising potential to deal with the water pollution of toxic selenium ions that act as a serious threat to human health and the ecological environment. The development of cheap and eco-friendly approaches to remove SeO is of great significance for the safety of drinking water. However, there are some disadvantages in most of the employed methods, such as poor removal capability, high cost, and unsustainability.

View Article and Find Full Text PDF

Objective: To measure current levels and experiences of food and water security in Walgett to guide a community-led program and to provide a baseline measure.

Design: A community-led cross-sectional survey conducted in April 2022 by trained local researchers.

Setting: Walgett, a regional town in NSW, Australia.

View Article and Find Full Text PDF

Effect of drinking water salinity on lactating cows' water and feed intake, milk yield, and rumen physiology.

Animal

December 2024

Department of Ruminant Science, Institute of Animal Science, Agricultural Research Organization, Rishon Lezion 7528809, Israel. Electronic address:

Use of desalinated seawater in arid and semiarid regions for domestic, industrial, and agricultural purposes is on the rise. Consequently, in those regions, drinking water offered to lactating cows has lower salinity and mineral concentrations than in the past. Although water with total dissolved solids (TDSs) of up to 1 000 ppm is considered safe for drinking, lower salinity level may affect rumen physiology, feed and water intake, or milk yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!