To improve the performance of a whole-cell biosensor for lead detection, we designed six gene circuits by re-configuring the regulatory elements and incorporating positive feedback loops to the circuits. The lead resistance operon pbr encodes six genes with pbrRT on one side of the promoter and pbrABCD on the other side. PbrR, the divergent promoter it regulates, and GFP were used to design the lead biosensors. One has pbrR and gfp on opposite sides of the promoter mimicking the native operon. We re-configured it by placing pbrR and gfp on the same side or under two separate promoters. The one with pbrR and gfp on the same side demonstrated lead sensitivity 10 times higher than the others. Positive feedback loop was introduced to these circuits. The strength of the output signal from the designs with positive feedback loop was 1.5-2 times stronger than those without positive feedback. This study demonstrates the importance of configuration and positive feedback as effective strategies to improve the performance of lead biosensors and they can be extended to the design of other whole-cell biosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsle/fny157 | DOI Listing |
Diagn Microbiol Infect Dis
December 2024
Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia; Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia.
Background: Quality assurance programs (QAPs) are used to evaluate the analytical quality of a diagnostic test and provide feedback to improve quality processes in testing. Rapid diagnostic tests were used in both laboratory and non-laboratory settings to diagnose COVID-19, although varied in reported performance. We aimed to design and implement a QAP for antigen rapid diagnostic tests (Ag-RDTs) for COVID-19 in Cambodia, Lao PDR, and Papua New Guinea.
View Article and Find Full Text PDFAust Crit Care
January 2025
Centre for Quality and Patient Safety Research - Eastern Health Partnership, Box Hill, Victoria 3128, Australia; School of Nursing and Midwifery and Centre for Quality and Patient Safety in the Institute for Health Transformation, Deakin University, Geelong, Victoria 3125, Australia.
Background: The pandemic response required the large-scale redeployment of nurses to support the care of patients with COVID-19. Surveys of staff and analysis of staff feedback indicated that the frequent redeployment of intensive care unit (ICU) registered nurses (RNs) led to dissatisfaction and contributed to voluntary reductions in hours and increased intentions to resign. Whilst much is understood about the redeployment of non-ICU RNs into ICUs to support patient care during periods of high demand, less is known about ICU RNs' experiences of being redeployed to general wards.
View Article and Find Full Text PDFInt Endod J
January 2025
School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Aim: Effective control of mesenchymal stem cell (MSC) differentiation towards osteogenic lineages is fundamental for bone regeneration. This study elucidates the regulatory role of methyltransferase like 7A (METTL7A) in the osteogenic differentiation of MSCs.
Methodology: Alkaline phosphatase staining, Alizarin Red S staining, western blotting, and in vivo studies were conducted to determine the effects of METTL7A depletion or overexpression on the osteogenic differentiation of various types of MSCs.
Well-designed effective interventions promoting sustainable diets are urgently needed to benefit both human and planetary health. This study evaluated the feasibility, acceptability, and potential impact of a pilot blended digital intervention aimed at promoting sustainable diets. We conducted a series of ABA n-of-1 trials with baseline, intervention, and follow-up phases over the course of a year, involving twelve participants.
View Article and Find Full Text PDFOncogene
January 2025
Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
In recent years, circRNAs have garnered increasing attention for their role in cervical cancer. However, the functions of many newly identified circRNAs remain unclear and require further exploration. In this study, we investigated the expression and oncogenic potential of the novel circRNA circSTX6 in cervical cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!