Background: In vitro scratch assays have been widely used to study the influence of bioactive substances on the processes of cell migration and proliferation that are involved in re-epithelialization. The development of high-throughput microscopy and image analysis has enabled scratch assays to become compatible with high-throughput research. However, effective processing and in-depth analysis of such high-throughput image datasets are far from trivial and require integration of multiple image processing and data extraction software tools.
Findings: We developed and implemented a kinetic re-epithelialization analysis pipeline (KREAP) in Galaxy. The KREAP toolbox incorporates freely available image analysis tools and automatically performs image segmentation and feature extraction of each image series, followed by automatic quantification of cells inside and outside the scratched area over time. The enumeration of infiltrating cells over time is modeled to extract three biologically relevant parameters that describe re-epithelialization kinetics. The output of the tools is organized, displayed, and saved in the Galaxy environment for future reference.
Conclusions: The KREAP toolbox in Galaxy provides an open-source, easy-to-use, web-based platform for reproducible image processing and data analysis of high-throughput scratch assays. The KREAP toolbox could assist a broad scientific community in the discovery of compounds that are able to modulate re-epithelialization kinetics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048990 | PMC |
http://dx.doi.org/10.1093/gigascience/giy078 | DOI Listing |
Bioengineering (Basel)
September 2024
Faculty of Engineering, School of Biomedical Engineering, University of Western Ontario, London, ON N6A 3K7, Canada.
Chronic wounds remain trapped in a pro-inflammatory state, with strategies targeted at inducing re-epithelialization and the proliferative phase of healing desirable. As a member of the lectin family, galectin-3 is implicated in the regulation of macrophage phenotype and epithelial migration. We investigated if local delivery of galectin-3 enhanced skin healing in a full-thickness excisional C57BL/6 mouse model.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Most conventional wound dressings do not meet the clinical requisites owing to their limited multifunctionality. Herein, a bilayer wound dressing containing both hydrogel and fibrous structures with multifunctional features was developed for effective skin rehabilitation. Sodium alginate (SA)/gelatin (Gel) hydrogel comprising Matricaria chamomilla L extract and silver sulfadiazine (AgSD) drug as antibacterial agents was cross-linked using genipin and CaCl.
View Article and Find Full Text PDFJ Mater Chem B
August 2024
Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir Shuhama Srinagar, Jammu and Kashmir, 190006, India.
Wound healing represents a complex biological process crucial for tissue repair and regeneration. In recent years, biomaterial-based scaffolds loaded with bioactive compounds have emerged as promising therapeutic strategies to accelerate wound healing. In this study, we investigated the properties and wound healing effects of cryogels loaded with calcium peroxide (CP) and berberine (BB).
View Article and Find Full Text PDFInt J Biol Macromol
July 2024
Department of Biomedicine, Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology, Sector H-12, 44000 Islamabad, Pakistan. Electronic address:
Skin wound healing and regeneration is very challenging across the world as simple or acute wounds can be transformed into chronic wounds or ulcers due to foreign body invasion, or diseases like diabetes or cancer. The study was designed to develop a novel bioactive scaffold, by loading aloesin to chitosan-coated cellulose scaffold, to cure full-thickness skin wounds. The physiochemical characterization of the scaffold was carried out using scanning electron microscopy (SEM) facilitated by energy-dispersive spectrophotometer (EDS), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR).
View Article and Find Full Text PDFPharmaceutics
July 2023
Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!