MicroRNA (miRNA) plays an important role in tumourigenesis and cancer development by regulating oncogenes or tumour suppressor that are implicated in cell cycle, cell mobility and even cell senescence. Due to the resistance to enzymes that could degrade nucleotides, miRNAs have been considered proper for diagnosis and prognosis evaluation of cancer. The present study was designed to investigate miRNA associated with ESCC and identified effective miRNAs, which could serve as biomarker or targets. We first performed miRNA profiling to identify a subset of dysregulated miRNAs in ESCC. miR-135, miR-451 and miR-186 were the most differentially expressed miRNAs. Subsequent RT-PCR validated that miR-135 was upregulated in ESCC cell lines TE2 and TE9, implying the promise as a prognostic and diagnostic marker. The Cox regression analysis suggests the correlation of miR-135 expression and tumour stages. Survival analysis demonstrated metastatic samples largely have higher miR-135 expression. Downregulation of miR-135 suppressed proliferation and invasion of TE2 and TE9 cell lines. Subsequent target prediction combined with functional enrichment analysis identified "Small GTPase superfamily" that are possibly targeted by miR-135, which offers candidates for further investigation. Finally, RERG was identified as a target of miR-135. Downregulation of RERG could inhibit the cell proliferation and sphere formation ability of TE2 and TE9. Taken together, miR-135 was proved to promote tumour development of ESCC, which promises the prospect of using miR-135 as a biomarker indicator in diagnosis and prognosis.

Download full-text PDF

Source
http://dx.doi.org/10.1080/21691401.2018.1483379DOI Listing

Publication Analysis

Top Keywords

te2 te9
12
mir-135
10
diagnosis prognosis
8
cell lines
8
mir-135 expression
8
cell
7
mir-135 promotes
4
promotes proliferation
4
proliferation stemness
4
stemness oesophageal
4

Similar Publications

MicroRNA (miRNA) plays an important role in tumourigenesis and cancer development by regulating oncogenes or tumour suppressor that are implicated in cell cycle, cell mobility and even cell senescence. Due to the resistance to enzymes that could degrade nucleotides, miRNAs have been considered proper for diagnosis and prognosis evaluation of cancer. The present study was designed to investigate miRNA associated with ESCC and identified effective miRNAs, which could serve as biomarker or targets.

View Article and Find Full Text PDF

We previously reported a gradual increase of relative mitochondrial DNA (mtDNA) copy number during the progression of esophageal squamous cell carcinoma (ESCC). Because mitochondria are the intracellular organelles responsible for ATP production, we investigated the associations among mtDNA copy number, mitochondrial bioenergetic function, tumor invasion and the expression levels of epithelial mesenchymal transition (EMT) markers in a series of seven ESCC cell lines, including 48T, 81T, 146T, TE1, TE2, TE6 and TE9. Among them, TE1 had the highest relative mtDNA copy number of 240.

View Article and Find Full Text PDF

Background: Adaptor proteins, with multimodular structures, can participate in the regulation of various cellular functions. A novel adaptor protein XB130 has been implicated as a substrate and regulator of tyrosine kinase-mediated signaling and in controlling cell proliferation and apoptosis in thyroid and lung cancer cells. However, its expression and role in gastrointestinal cancer have not been investigated.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor-gamma (PPAR-gamma), a member of the nuclear hormone receptor superfamily, is involved in suppressing the growth of several tumors. We showed that PPAR-gamma is expressed in Barrett's adenocarcinoma cell lines and inhibited the growth of these lines through the induction of G1 cell cycle arrest and apoptosis. We examined PPAR-gamma expression in human esophageal squamous cell carcinoma (SCC) in vitro and in vivo and investigated whether PPAR-gamma ligands affect the proliferation and apoptosis of human SCC cell lines.

View Article and Find Full Text PDF

Radiation therapy is a powerful tool for the treatment of oesophageal cancer. We established radioresistant cell lines by applying fractionated irradiation in order to identify differentially expressed genes between parent and radioresistant cells. Six oesophageal cancer cell lines (TE-2, TE-5, TE-9, TE-13, KYSE170, and KYSE180) were treated with continuous 2 Gy fractionated irradiation (total dose 60 Gy).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!