Considering the high number of accidents with diesel oil spills occurring in the marine ecosystem, toxicity tests aimed at assessing the effects of this pollutant on biota are necessary and urgent. Thus, the present study aimed to evaluate the toxicity of the soluble fraction of diesel oil (WSD) in the fertilization success of gametes and pluteu larvae of the sea urchin Echinometra lucunter. To do this, gametes and embryos were exposed to concentrations of 0% (control group), 0.5%, 1.5% and 2.5% of WSD. The fertilization success of exposed gametes and embryos were reduced significantly when compared to the control group in all tested concentrations. With this finding, it is evident that diesel oil can be significantly promoted in the early and adult life stages of a particular organism, and a better way of evaluating this toxicity is through the analysis of contaminant effects throughout the reproductive cycle of a species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2018.06.040 | DOI Listing |
Sci Rep
December 2024
Department of Power Engineering and Transportation, University of Life Sciences in Lublin, Gleboka 28, 20-612, Lublin, Poland.
Engine oil is a valuable source of information on the technical condition of the drive unit. Under the influence of many factors, including operating conditions, time, high temperature, and various types of contamination, the oil gradually degrades, which can result in serious engine damage. The subject of the article focuses on an attempt to answer the questions of how engine failure affects the degradation of engine oil and whether we can use this knowledge to detect potential problems in public transport vehicles at an early stage.
View Article and Find Full Text PDFFood Chem
December 2024
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:
Adv Mater
December 2024
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China.
Fast-charging lithium-ion batteries (LIBs) are essential for electric vehicles (EVs) to compete with conventional gasoline ones in terms of charging viability, yet the aggressive capacity drop in fast-charging scenarios gives rise to concerns regarding durability and sustainability. Herein, it is clarified that for fast-charging batteries, the excessive lithium (Li) plating on graphite anode inevitably brings capacity fading, and the concurrent accumulation of LiO-dominant passivation species that form dead Li is the main reason for their poor rechargeability. To refresh the passivated graphite, a voltage-induced activation mechanism is developed to leverage bromide (Br/Br ) redox couple for LiO and isolated Li activation in situ.
View Article and Find Full Text PDFChemosphere
December 2024
School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia. Electronic address:
Commercial grease interceptors (GIs), commonly used in food service establishments, are primarily designed to treat fat, oil and grease (FOG) from handwash sink (HS) wastewater. They are generally less effective for removing highly concentrated FOG from dishwasher (DW) effluents which contain highly emulsified FOG with complex long-chain fatty acids (LCFAs). Furthermore, standard testing of GIs uses diesel fuel to simulate FOG separation; however, the flow properties of typical cooking oils and animal fats differ significantly from diesel.
View Article and Find Full Text PDFSci Total Environ
December 2024
Climate Policy Lab, ETH Zürich, 8092 Zürich, Switzerland; Laboratory for Energy Systems Analysis, PSI Center for Energy and Environmental Sciences, 5232 Villigen, Switzerland. Electronic address:
To reduce environmental impacts from the shipping industry, the FuelEU Maritime Regulation has set a binding 80 % reduction target for well-to-wake (WTW) greenhouse gas (GHG) emissions by 2050. This article presents a prospective life cycle assessment (LCA) comparing the environmental impacts of e-ammonia, e-methanol, e-Fischer Tropsch (FT) diesel, and e-liquefied natural gas (LNG)-for maritime applications in Europe. In addition to e-fuels, traditional propulsion technologies using very low sulfur fuel oil (VLSFO) and LNG are assessed, both with and without integrating ship-based carbon capture (SBCC) systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!