Modeling of the multimodal radiation from an open-ended waveguide.

J Acoust Soc Am

KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300B, Heverlee, B-3001, Belgium.

Published: June 2018

The multimodal radiation from the open end of a cylindrical waveguide with arbitrary wall thickness is solved by deriving algebraic solutions of the radiation impedance matrix, without restrictive hypothesis on the frequency range. The basic idea of the method is to turn the original unbounded problem into the problem of a cylindrical waveguide embedded in an infinite waveguide with an annular perfectly matched layer (PML) on its wall. Then, using a multimodal formalism of the guided wave propagation and a complex coordinate stretching PML, algebraic expressions are derived for the continuity and radiation conditions in this coupled system.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.5041268DOI Listing

Publication Analysis

Top Keywords

multimodal radiation
8
cylindrical waveguide
8
modeling multimodal
4
radiation
4
radiation open-ended
4
waveguide
4
open-ended waveguide
4
waveguide multimodal
4
radiation open
4
open cylindrical
4

Similar Publications

Primary cardiac tumors are a rare disease, with 20% of the cases being malignant. Among them, angiosarcoma is characterized by a short clinical course and poor prognosis, even after surgery, chemotherapy, and radiation therapy. We present a 67-year-old woman diagnosed with a primary malignant tumor (angiosarcoma) infiltrating the right atrial myocardium.

View Article and Find Full Text PDF

Background: The objective of this study was to comprehensively review the literature on Shear Wave Elastography (SWE), a non-invasive imaging technique prevalent in medical ultrasound. SWE is instrumental in assessing superficial glandular tissues, abdominal organs, tendons, joints, carotid vessels, and peripheral nerve tissues, among others. By employing bibliometric analysis, we aimed to encapsulate the scholarly contributions over the past two decades, identifying key research areas and tracing the evolutionary trajectory of SWE.

View Article and Find Full Text PDF

This study presents a patient with a PET-CT detected residual lacrimal sac tumor who was treated with intensity modulated proton therapy (IMPT) and concurrent chemotherapy. The patient a 49-year-old male diagnosed with squamous cell carcinoma of the left lacrimal sac had under-went endoscopic surgery. Postoperative PET-CT implied tumor residual in the left lacrimal sac.

View Article and Find Full Text PDF

Mapping the spatial atlas of the human bone tissue integrating spatial and single-cell transcriptomics.

Nucleic Acids Res

January 2025

Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA.

Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!