A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acoustic landmarks contain more information about the phone string than other frames for automatic speech recognition with deep neural network acoustic model. | LitMetric

Most mainstream automatic speech recognition (ASR) systems consider all feature frames equally important. However, acoustic landmark theory is based on a contradictory idea that some frames are more important than others. Acoustic landmark theory exploits quantal nonlinearities in the articulatory-acoustic and acoustic-perceptual relations to define landmark times at which the speech spectrum abruptly changes or reaches an extremum; frames overlapping landmarks have been demonstrated to be sufficient for speech perception. In this work, experiments are conducted on the TIMIT corpus, with both Gaussian mixture model (GMM) and deep neural network (DNN)-based ASR systems, and it is found that frames containing landmarks are more informative for ASR than others. It is discovered that altering the level of emphasis on landmarks by re-weighting acoustic likelihood tends to reduce the phone error rate (PER). Furthermore, by leveraging the landmark as a heuristic, one of the hybrid DNN frame dropping strategies maintained a PER within 0.44% of optimal when scoring less than half (45.8% to be precise) of the frames. This hybrid strategy outperforms other non-heuristic-based methods and demonstrate the potential of landmarks for reducing computation.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.5039837DOI Listing

Publication Analysis

Top Keywords

automatic speech
8
speech recognition
8
deep neural
8
neural network
8
asr systems
8
acoustic landmark
8
landmark theory
8
frames
6
acoustic
5
acoustic landmarks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!