A simulation method for the phase diagram of complex fluid mixtures.

J Chem Phys

Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA.

Published: June 2018

The phase behavior of complex fluid mixtures is of continuing interest, but obtaining the phase diagram from computer simulations can be challenging. In the Gibbs ensemble method, for example, each of the coexisting phases is simulated in a different cell, and ensuring the equality of chemical potentials of all components requires the transfer of molecules from one cell to the other. For complex fluids such as polymers, successful insertions are rare. An alternative method is to simulate both coexisting phases in a single simulation cell, with an interface between them. The challenge here is that the interface position moves during the simulation, making it difficult to determine the concentration profile and coexisting concentrations. In this work, we propose a new method for single cell simulations that uses a spatial concentration autocorrelation function to (spatially) align instantaneous concentration profiles from different snapshots. This allows one to obtain average concentration profiles and hence the coexisting concentrations. We test the method by calculating the phase diagrams of two systems: the Widom-Rowlinson model and the symmetric blends of freely jointed polymer molecules for which phase diagrams from conventional methods are available. Excellent agreement is found, except in the neighborhood of the critical point where the interface is broad and finite size effects are important. The method is easy to implement and readily applied to any mixture of complex fluids.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5033958DOI Listing

Publication Analysis

Top Keywords

phase diagram
8
complex fluid
8
fluid mixtures
8
coexisting phases
8
complex fluids
8
coexisting concentrations
8
concentration profiles
8
phase diagrams
8
phase
5
method
5

Similar Publications

Carbon steel and low alloy steel are pearlitic heat-resistant steels with a lamellar microstructure. There are good mechanical properties and are widely used in crucial components of high-temperature pressure. However, long-term service in high-temperature environments can easily lead to material degradation, including spheroidization, graphitization, and thermal aging.

View Article and Find Full Text PDF

CO flooding plays a crucial role in enhancing oil recovery and achieving carbon reduction targets, particularly in unconventional reservoirs with complex pore structures. The phase behavior of CO and hydrocarbons at different scales significantly affects oil recovery efficiency, yet its underlying mechanisms remain insufficiently understood. This study improves existing thermodynamic models by introducing Helmholtz free energy as a convergence criterion and incorporating adsorption effects in micro- and nano-scale pores.

View Article and Find Full Text PDF

Crystal Structure and Magnetic Properties of the Novel Compound ErMnGe.

Materials (Basel)

January 2025

MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

The RE-M-Ge systems (RE: rare earths, M: transition group elements) contain a large number of compounds with special magnetic properties. A novel compound ErMnGe was found during the investigation on the phase diagram of the Er-Mn-Ge ternary system, and its crystal structure and magnetic properties were investigated. Powder X-ray diffraction results show that ErMnGe crystallizes in an orthorhombic YNiSi-type structure with the space group Pnma (No.

View Article and Find Full Text PDF

Determination of the Entire Existence Composition Range of CrMnFeCoNi High-Entropy Alloys Using Sintered Diffusion Multiple Method.

Materials (Basel)

January 2025

Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Ibaraki, Japan.

The sintered diffusion multiple (SDM) method, which has been developed in our research group, has been applied to determine the entire composition range of the CrMnFeCoNi high-entropy alloy stereoscopically and continuously over nearly the entire range. The samples were prepared by sintering mixed elemental powders and were annealed at 970 °C or 800 °C. Several hundreds of thousands of points were analyzed at random within the samples for chemical compositions using electron probe microanalysis.

View Article and Find Full Text PDF

Zipper Pattern: An Investigation into Psychotic Criminal Detection Using EEG Signals.

Diagnostics (Basel)

January 2025

Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig 23119, Turkey.

Electroencephalography (EEG) signal-based machine learning models are among the most cost-effective methods for information retrieval. In this context, we aimed to investigate the cortical activities of psychotic criminal subjects by deploying an explainable feature engineering (XFE) model using an EEG psychotic criminal dataset. In this study, a new EEG psychotic criminal dataset was curated, containing EEG signals from psychotic criminal and control groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!