Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning.

J Chem Phys

Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.

Published: June 2018

Classical intermolecular potentials typically require an extensive parametrization procedure for any new compound considered. To do away with prior parametrization, we propose a combination of physics-based potentials with machine learning (ML), coined IPML, which is transferable across small neutral organic and biologically relevant molecules. ML models provide on-the-fly predictions for environment-dependent local atomic properties: electrostatic multipole coefficients (significant error reduction compared to previously reported), the population and decay rate of valence atomic densities, and polarizabilities across conformations and chemical compositions of H, C, N, and O atoms. These parameters enable accurate calculations of intermolecular contributions-electrostatics, charge penetration, repulsion, induction/polarization, and many-body dispersion. Unlike other potentials, this model is transferable in its ability to handle new molecules and conformations without explicit prior parametrization: All local atomic properties are predicted from ML, leaving only eight global parameters-optimized once and for all across compounds. We validate IPML on various gas-phase dimers at and away from equilibrium separation, where we obtain mean absolute errors between 0.4 and 0.7 kcal/mol for several chemically and conformationally diverse datasets representative of non-covalent interactions in biologically relevant molecules. We further focus on hydrogen-bonded complexes-essential but challenging due to their directional nature-where datasets of DNA base pairs and amino acids yield an extremely encouraging 1.4 kcal/mol error. Finally, and as a first look, we consider IPML for denser systems: water clusters, supramolecular host-guest complexes, and the benzene crystal.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5009502DOI Listing

Publication Analysis

Top Keywords

non-covalent interactions
8
physics-based potentials
8
machine learning
8
prior parametrization
8
biologically relevant
8
relevant molecules
8
local atomic
8
atomic properties
8
interactions organic
4
organic biological
4

Similar Publications

Synergistic therapy with celastrol-curcumin multifunctional nanomedicine: Anti-hepatocellular carcinoma and reduced hepatotoxicity.

Int J Pharm

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China. Electronic address:

Hepatocellular carcinoma is one of the leading causes of cancer deaths globally and a key hindrance to extending life expectancy. Celastrol (CEL) demonstrates excellent antitumor activity, but faces challenges like low solubility and a narrow therapeutic window, limiting its clinical application. To address these limitations, drug combinations and nano-delivery systems have emerged as effective solutions.

View Article and Find Full Text PDF

Exploring the effect of Zr/B ratio on the stability and reactivity of activated ε-caprolactone complexes: A DFT, QTAIM and NCI study.

J Mol Graph Model

January 2025

Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand. Electronic address:

Monomer insertion, leading to the formation of an activated monomer complex, is a critical step in cationic ring-opening polymerization (CROP) of cyclic monomers, such as ε-caprolactone (CL). In this study, Density Functional Theory (DFT) calculations were employed to investigate the structural and electronic properties of four activated complexes at two Zr:B ratios (1:2 and 1:1), where Zr is the cationic zirconocene catalyst, Cp₂ZrMe⁺, and B is the borate cocatalyst, [MeB(CF)] or [B(CF)]. Steric hindrance at the reactive site was analyzed using topographic steric maps, while inter- and intramolecular interactions of the complex systems were examined through the Quantum Theory of Atoms in Molecules (QTAIM) and non-covalent interaction (NCI) analyses.

View Article and Find Full Text PDF

This study investigates simple acetylenes substituted with phenylurea as a constant H-bonding unit (Alk-R) and varied hydrophobic units (R = H, Phenyl (Ph), Phenylacetylene (PA), Ph-NMe2) to understand self-assembly properties driven by synergistic non-covalent interactions. Our observations reveal hierarchical self-assembled fibrillar networks with luminescent needles, fibers, and flowers on nano- to micro-meter scales. Subtle changes in substituents led to significant differences: H, Ph, PA, and Ph-NMe2 produced needle-like crystals, dendritic nanofibers, microflakes, and no self-assembly, respectively.

View Article and Find Full Text PDF

Characterization of insulin and bile acid complexes in liposome by different mass spectrometry techniques.

Anal Bioanal Chem

January 2025

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.

Insulin bound with ligand molecules can improve its bioavailability in oral formulations. In this work, the interactions between insulin and bile acids of taurocholic acid (TCA) and glycocholic acid (GCA) are characterized using different mass spectrometry (MS) methods. Electrospray (ESI)-MS analysis revealed that GCA and TCA could interact with insulin individually or together through non-covalent bonds, and the products included mGCA-insulin, nTCA-insulin, and mGCA-nTCA-insulin complexes.

View Article and Find Full Text PDF

The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!