A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neural-network Kohn-Sham exchange-correlation potential and its out-of-training transferability. | LitMetric

We incorporate in the Kohn-Sham self-consistent equation a trained neural-network projection from the charge density distribution to the Hartree-exchange-correlation potential n → V for a possible numerical approach to the exact Kohn-Sham scheme. The potential trained through a newly developed scheme enables us to evaluate the total energy without explicitly treating the formula of the exchange-correlation energy. With a case study of a simple model, we show that the well-trained neural-network V achieves accuracy for the charge density and total energy out of the model parameter range used for the training, indicating that the property of the elusive ideal functional form of V can approximately be encapsulated by the machine-learning construction. We also exemplify a factor that crucially limits the transferability-the boundary in the model parameter space where the number of the one-particle bound states changes-and see that this is cured by setting the training parameter range across that boundary. The training scheme and insights from the model study apply to more general systems, opening a novel path to numerically efficient Kohn-Sham potential.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5029279DOI Listing

Publication Analysis

Top Keywords

charge density
8
total energy
8
model parameter
8
parameter range
8
neural-network kohn-sham
4
kohn-sham exchange-correlation
4
potential
4
exchange-correlation potential
4
potential out-of-training
4
out-of-training transferability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!