Background: Fibronectin splicing variant containing extra domain A (Fn-EDA), which is an endogenous ligand for Toll-like receptor 4 (TLR4), is present in negligible amounts in the plasma of healthy humans, but markedly elevated in patients with co-morbid conditions including diabetes and hyperlipidaemia, which are risk factors for myocardial infarction (MI). Very little is known about the role of Fn-EDA in the pathophysiology of acute MI under these co-morbid conditions.
Materials And Methods: We determined the role of Fn-EDA in myocardial ischaemia/reperfusion (I/R) injury in the hyperlipidaemic apolipoprotein E-deficient (ApoE) mice. Infarct size, plasma cardiac troponin I (cTnI) levels, intravascular thrombosis (CD41-positive), neutrophil infiltration (Ly6 B.2-positive), neutrophil extracellular traps (citrullinated H3-positive) and myocyte apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling-positive) were assessed in myocardial I/R injury model (1-hour ischaemia/23 hours of reperfusion).
Results: Irrespective of gender, Fn-EDAApoE mice exhibited smaller infarct size and decreased cTnI levels concomitant with reduced post-ischaemic intra-vascular thrombi, neutrophils influx, neutrophil extracellular traps and myocyte apoptosis (< 0.05 vs. ApoE mice). Genetic deletion of TLR4 attenuated myocardial I/R injury in ApoE mice (< 0.05 vs. ApoE mice), but did not further reduce in Fn-EDA ApoE mice suggesting that Fn-EDA requires TLR4 to mediate myocardial I/R injury. Bone marrow transplantation experiments revealed that Fn-EDA exacerbates myocardial I/R injury through TLR4 expressed on the haematopoietic cells. Infusion of a specific inhibitor of Fn-EDA, 15 minutes post-reperfusion, into ApoE mice attenuated myocardial I/R injury.
Conclusion: Fn-EDA exacerbates TLR4-dependent myocardial I/R injury by promoting post-ischaemic thrombo-inflammatory response. Targeting Fn-EDA may reduce cardiac damage following coronary artery re-canalization after acute MI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027995 | PMC |
http://dx.doi.org/10.1055/s-0038-1661353 | DOI Listing |
Int J Mol Sci
January 2025
Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania.
We test here the prediction capabilities of the new generation of deep learning predictors in the more challenging situation of multistate multidomain proteins by using as a case study a coiled-coil family of Nucleotide-binding Oligomerization Domain-like (NOD-like) receptors from and a few extra examples for reference. Results reveal a truly remarkable ability of these platforms to correctly predict the 3D structure of modules that fold in well-established topologies. A lower performance is noticed in modeling morphing regions of these proteins, such as the coiled coils.
View Article and Find Full Text PDFBackground/objectives: The failure of physiological left-right (LR) patterning, a critical embryological process responsible for establishing the asymmetric positioning of internal organs, leads to a spectrum of congenital abnormalities characterized by laterality defects, collectively known as "heterotaxy". biallelic variants have recently been associated with heterotaxy syndrome and congenital heart defects (CHD). However, the genotype-phenotype correlations and the underlying pathogenic mechanisms remain poorly understood.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mechanical Engineering, Anhui Institute of Information Technology, Wuhu, 241199, Anhui, China.
To address the challenge of accurately capturing tool wear states in small sample scenarios, this paper proposes a tool wear prediction method that combines XGBoost feature selection with a PSO-BP network. In order to solve the problem of input feature selection and parameter selection in BP neural network, a double-layer programming model of input feature and parameter selection is established, which is solved by XGBoost and PSO. Initially, vibration and cutting force signals from CNC machining are preprocessed using time-domain segmentation, Hampel filtering, and wavelet denoising.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
Modern treat-to-target management of rheumatoid arthritis (RA) involves titration of drug therapy to achieve remission, requiring close monitoring of disease activity through frequent clinical assessments. Accelerometry offers a novel method for continuous remote monitoring of RA activity by capturing fluctuations in mobility, sedentary behaviours, physical activity and sleep patterns over prolonged periods without the expense, inconvenience and environmental impact of extra hospital visits. We aimed to (a) assess the feasibility, usability and acceptability of wearable devices in patients with active RA; (b) investigate the multivariate relationships within the dataset; and (c) explore the robustness of accelerometry outcomes to downsampling to facilitate future prolonged monitoring.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India.
Eukaryotic Initiation Factor 4 (eIF4) is a group of factors that activates mRNA for translation and recruit 43S preinitiation complex (PIC) to the mRNA 5' end, forming the 48S PIC. The eIF4 factors include mRNA 5' cap-binding protein eIF4E, ATP-dependent RNA helicase eIF4A, and scaffold protein eIF4G, which anchors eIF4A and eIF4E. Another eIF4 factor, eIF4B, stimulates the RNA helicase activity of eIF4A and facilitates mRNA recruitment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!