A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modelling of magnetoimpedance response of thin film sensitive element in the presence of ferrogel: Next step toward development of biosensor for in-tissue embedded magnetic nanoparticles detection. | LitMetric

Modelling of magnetoimpedance response of thin film sensitive element in the presence of ferrogel: Next step toward development of biosensor for in-tissue embedded magnetic nanoparticles detection.

Biosens Bioelectron

Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620002, Russia; Department of de Electricity and Electronics, University of the Basque Country UPV-EHU, Bilbao 48080, Spain. Electronic address:

Published: October 2018

In-tissue embedded magnetic nanoparticle (MNPs) detection is one of the most interesting cases for cancer research. In order to understand the origin, the limits and the way of improvement of magnetic biosensor sensitivity for the detection of 3D mezoscopic distributions of MNPs, we have developed a magnetoimpedance biosensor prototype with a [Cu (3 nm)/FeNi(100 nm)]/Cu(500 nm)/[FeNi(100 nm)/Cu(3 nm)] rectangular sensitive element. Magnetoimpedance (MI) responses were measured with and without polyacrylamide ferrogel layer mimicking natural tissue in order to evaluate stray fields of embedded MNPs of γ-FeO iron oxide. A model for MI response based on a solution of Maxwell equations with Landau-Lifshitz equation was developed in order to understand the origin of the prototype sensitivity which reached 1.3% of ΔZ/Z per 1% of MNPs concentration by weight. To make this promising technique useful for magnetically labeled tissue detection, a synthesis of composite gels with MNPs agglomerates compactly located inside pure gel and their MI testing are still necessary.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2018.06.032DOI Listing

Publication Analysis

Top Keywords

sensitive element
8
in-tissue embedded
8
embedded magnetic
8
order understand
8
understand origin
8
mnps
5
modelling magnetoimpedance
4
magnetoimpedance response
4
response thin
4
thin film
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!