In-situ transmission electron microscopy experiments are of great interest to nanoscience and nanotechnology. However, it is known that the electron beam can have a significant impact on the structure of the sample which makes it important to carefully interpret in-situ data. In this work, we studied the thermal stability of CTAB-stabilized gold nanorods under different gaseous environments in an environmental transmission electron microscope and compared the outcome to ex-situ heating experiments. We observed a remarkable influence of the electron beam: While the nanorods were stable under inert conditions when exposed to the electron beam even at 400°C, the same nanorods reshaped at temperatures as low as 100°C under ex-situ conditions. We ascribe the stabilizing effect to the transformation of the CTAB bi-layer into a thin carbon layer under electron beam irradiation, preventing the nanorods from deforming. When exposed to an oxidizing environment in the environmental transmission electron microscope, this carbon layer was gradually removed and the gold atoms became mobile allowing for the deformation of the rod. This work highlights the importance of understanding the phenomena taking place under electron beam irradiation, which can greatly affect in-situ experiments and conclusions drawn from these. It stresses that in-situ electron microscopy data, taken on measuring the temperature dependence of nanoparticle properties, should be carefully assessed and accompanied by ex-situ experiments if possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2018.05.006 | DOI Listing |
ACS Appl Electron Mater
December 2024
CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095, United States.
Electron microscopy in its various forms is one of the most powerful imaging and structural elucidation methods in nanotechnology where sample information is generally limited by random chemical and structural damage. Here we show how a well-selected chemical probe can be used to transform indiscriminate chemical damage into clean chemical processes that can be used to characterize some aspects of the interactions between high-energy electron beams and soft organic matter. Crystals of a Dewar benzene exposed to a 300 keV electron beam facilitate a clean valence-bond isomerization radical-cation chain reaction where the number of chemical events per incident electron is amplified by a factor of up to ca.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.
View Article and Find Full Text PDFSci Rep
December 2024
SANKEN (Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
By employing the stabilizer in the supersonic gas nozzle to produce the plasma density profile with a sharp downramp, we have experimentally demonstrated highly stable electron beam acceleration based on the shock injection mechanism in laser wakefield acceleration with the use of a compact Ti:sapphire laser. A quasi-monoenergetic electron beam with a peak energy of 315 MeV ± 12.5 MeV per shot is generated.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, University of Liverpool, Oxford Street, Liverpool, L69 7ZE, UK.
Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!