Identification of jumonjiC domain containing gene family among the Oryza species and their expression analysis in FL478, a salt tolerant rice genotype.

Plant Physiol Biochem

ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India. Electronic address:

Published: September 2018

The jumonji (JMJ)-C domain containing proteins belong to histone demethylases family with the ability to demethylate the tri-methylated histone residues. They act as chromatin regulators to regulate many physiological functions in plants. The present study deals with the characterization of JMJ-C gene family members in wild as well as cultivated rice species and their expression analysis in salt tolerant rice genotype, FL478. The genome wide study identified 151 members belonging to JMJ-C gene family in 11 different Oryza species. We also studied their structure, genomic location, gene duplication events, phylogenetic relationship, in silico expression analysis and identified cis elements in their promoters. We also found a few JMJ-C gene family members in rice which underwent duplication before the whole genome duplication event of the rice. The qRT-PCR based expression profiling revealed that out of the total 15 rice JMJ-C members, two were highly expressed in the flag leaf stage of FL478 under salt treatment. These two candidate JMJ-C members were also found to render salinity tolerance when over-expressed in yeast cells. Thus, the present study helps in further structural as well as functional characterization of JMJ-C genes under salinity stress in Oryza species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2018.06.031DOI Listing

Publication Analysis

Top Keywords

gene family
16
oryza species
12
expression analysis
12
jmj-c gene
12
family oryza
8
species expression
8
fl478 salt
8
salt tolerant
8
tolerant rice
8
rice genotype
8

Similar Publications

Protein Phosphatase 2A B'α and B'β promote pollen wall construction partially through BZR1-activated CEP1 in Arabidopsis.

J Exp Bot

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.

A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.

View Article and Find Full Text PDF

Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells.

Genes Dev

December 2024

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom

The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.

View Article and Find Full Text PDF

The link of FOXO1 and FOXO4 transcription factors to development of the lens.

Dev Dyn

January 2025

Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.

View Article and Find Full Text PDF

This study analyzed targeted sequencing data from 6530 tissue samples from patients with metastatic Chinese colorectal cancer (CRC) to identify low mutation frequency and subgroup-specific driver genes, using three algorithms for overall CRC as well as across different clinicopathological subgroups. We analyzed 425 cancer-related genes, identifying 101 potential driver genes, including 36 novel to CRC. Notably, some genes demonstrated subgroup specificity; for instance, ERBB4 was found as a male-specific driver gene and mutations of ERBB4 only influenced the prognosis of male patients with CRC.

View Article and Find Full Text PDF

Background: N6-methyladenosine (m6A) is one of the most conserved internal RNA modifications, which has been implicated in many biological processes, such as apoptosis and proliferation. Wilms tumor 1-associating protein (WTAP), as a key component of m6A methylation, is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Rheumatoid arthritis (RA), a systemic, infiltrating autoimmune disease, is characterized by synovial hyperplasia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!