Discovery of new antibacterial agents requires the development of novel techniques for bacteria surface characterization after treatment with antibiotics. In this study, we investigate the effect of ampicillin at MICs levels on adhesive properties of Gram-positive and Gram-negative bacteria, using atomic force microscopy (AFM). Our results revealed that the treatment leads to changes of bacterial surface properties, especially cell surface roughness. A nanomechanical alteration of the cells led to an increase of adhesive forces and rupture lengths. Changes in adhesive properties are determined not only by the modification of physicochemical cell properties but also by an increase in roughness, leading to an increase of the contact area with a cantilever tip. We discovered that the contribution of non-specific physicochemical interactions in the bacteria attachment to a substrate is not negligible and was significantly influenced by the presence of antibiotic. Ampicillin caused much greater change in the adhesion properties of Bacillus subtilis than Escherichia coli due to the mode of action of β-lactam antibiotic. Adhesion measurements may by a new way to investigate subtle changes of the bacterial surface properties caused by antibiotic, especially those targeting the bacterial cell wall. In contrast to nanoindentation assays, they provide information on adhesive properties of the bacteria surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micron.2018.05.005 | DOI Listing |
Sci Rep
January 2025
School of Information Technology, Jiangsu Open University, Nanjing, 210017, China.
Because of its dimensional characteristics, two-dimensional (2D) materials exhibit many special properties. The key to researching their features is to prepare high-quality larger-area monolayer 2D materials. Metal-assisted mechanical exfoliation method offers the possibility.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
Sustainable pavement is essential for country development, offering durable, environmentally friendly, and cost-effective infrastructure. For Malaysia, sustainable pavement supports Sustainable Development Goals (SDGs) 9 and 11 while addressing road deterioration caused by increasing traffic volumes and loads. This deterioration shortens pavement service life and necessitates frequent maintenance, driving the need for innovative solutions.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Industrial and Surface Engineering Laboratory, Bioprocess and Biointerfaces Team, Department of Life Sciences, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco.
Salmonella Typhi can adhere to and build biofilms on the surface of gallstones causing abnormal gallbladder mucosa, which could lead to carcinogenesis. The surface physicochemical properties of microbial cells and materials have been shown to play a crucial role in adhesion. Therefore, the purpose of this study was to investigate, for the first time, the surface properties of nine gallstones and to evaluate the influence of these parameters on the theoretical adhesion of S.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China. Electronic address:
Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method.
View Article and Find Full Text PDFBiomater Sci
January 2025
Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China.
Nature-inspired superhydrophobic materials have attracted considerable interest in blood-contacting biomedical applications due to their remarkable water-repellent and self-cleaning properties. However, the interaction mechanism between blood components and superhydrophobic surfaces remains unclear. To explore the effect of trapped air on platelet adhesion, we designed four distinct hydrophobic titanium dioxide (TiO) nanostructures with different fractions of trapped air.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!