Number of NMR/MRI studies on batteries is rapidly increasing in the past decade. As the test batteries designed for the studies contain metal parts such as electrodes and lead wires as well as other conductive parts (electrolyte), which all present obstacles for good MR signal reception, understanding of the role of battery design and of battery interactions with magnetic field is of a key importance for a successful performance of the experiments. For the study, five different samples mimicking a real battery cell were made. All the samples had two parallel copper electrodes separated by a gel layer, however, they differed in electrode thickness, gel conductivity and separation between the electrodes. The samples were inserted in an MRI magnet in different orientations with respect to magnetic fields B and B and scanned with the spin-echo and single point imaging methods in 2D and 3D (spin-echo only). The performed experiments confirmed that the main reason for poor MR signal reception from a test battery are RF-induced eddy currents. These were found stronger with the sample with the smaller distance between the electrodes. The effect of RF-induced eddy currents was efficiently suppressed when the sample was oriented with the electrodes parallel to the B field. However, in the orientation there were still susceptibility effects that caused a signal voiding in a narrow region near the electrodes. The susceptibility effects were found lower with the sample with thin electrodes and the non-conductive gel. The results of the study can help optimizing test battery and capacitor designs for NMR/MRI experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2018.06.013DOI Listing

Publication Analysis

Top Keywords

signal reception
12
battery cell
8
test battery
8
rf-induced eddy
8
eddy currents
8
susceptibility effects
8
electrodes
7
battery
6
study signal
4
reception model
4

Similar Publications

Multichannel transceiver coil arrays are needed to enable parallel imaging and B1 manipulation in ultrahigh field MR imaging and spectroscopy. However, the design of such transceiver coils and coil arrays often faces technical challenges in achieving the required high operating frequency at the ultrahigh fields and sufficient electromagnetic (EM) decoupling between resonant elements. In this work, we propose a high impedance microstrip transmission line resonator (HIMTL) technique that has unique high frequency capability and adequate EM decoupling without the use of dedicated decoupling circuits.

View Article and Find Full Text PDF

Neuromodulators have major influences on the regulation of neural circuit activity across the nervous system. Nitric oxide (NO) has been shown to be a prominent neuromodulator in many circuits and has been extensively studied in the retina. Here, it has been associated with the regulation of light adaptation, gain control, and gap junctional coupling, but its effect on the retinal output, specifically on the different types of retinal ganglion cells (RGCs), is still poorly understood.

View Article and Find Full Text PDF

The pygmy sperm whale (Kogia breviceps) possesses an exocrine gland associated with its false gill slit pigmentation pattern. The cervical gill slit gland is a compound tubuloalveolar gland that produces a holocrine secretion and displays maturational changes in size and secretory histology. While the morphology of the cervical gill slit gland has been described in detail, to date, the chemical composition of its secretion remains uncharacterized.

View Article and Find Full Text PDF

Purpose: The primary aim of the study was to examine the association between early childhood practitioners' use of language facilitation strategies during interactive book reading of informational texts related to science and the language skills of preschool children with developmental language disorder (DLD).

Method: Twenty-four practitioners (12 early childhood special education teachers and 12 speech-language pathologists) and 33 preschoolers with DLD participated. Practitioners received training and implemented an informational book-reading intervention for 19 weeks.

View Article and Find Full Text PDF

Electrocardiogram (ECG) signals contain complex and diverse features, serving as a crucial basis for arrhythmia diagnosis. The subtle differences in characteristics among various types of arrhythmias, coupled with class imbalance issues in datasets, often hinder existing models from effectively capturing key information within these complex signals, leading to a bias towards normal classes. To address these challenges, this paper proposes a method for arrhythmia classification based on a multi-branch, multi-head attention temporal convolutional network (MB-MHA-TCN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!