After its discovery, anti-N-methyl-d-aspartate receptor encephalitis is now an established neuroinflammatory disorder, for which various immune-suppressive strategies have been successfully proposed. The most commonly applied therapy includes high dose cortico-steroids, as well as plasma exchange procedures (PLEX), and subsequently either oral immunosuppressants, such as azathioprine or B-cell depletion by the anti- CD20 monoclonal antibody rituximab. However, in rare cases we are faced with patients who do not respond to either oral immunosuppressants, or rituximab. Hence, we have recently described bortezomib, a proteasome inhibitor as a potentially effective treatment in patients not responding to first-line immune-therapies. Particularly, plasma cells as mature, non-dividing antibody secreting cells are highly sensitive to proteasome inhibitors. Here, we report of a patient with severe, and prolonged anti-NMDAR encephalitis despite PLEX and repeatedly applied high dose rituximab. As documented in the accompanying video that shows the different stages before, and immediately after bortezomib therapy the patient recovered swiftly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clineuro.2018.06.005 | DOI Listing |
J ECT
December 2024
From the Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy.
Autoimmune encephalitis (AE) tends to manifest as a mixture of neuropsychiatric and somatic symptoms, either of which may predominate, and often shows a progressive clinical course sometimes leading to life-threatening conditions. Catatonic and psychotic syndromes, regardless of whether associated with dysautonomia, are common manifestations of AE, especially concerning the anti-NMDAR subtype. Several autoantibodies targeting different neuronal epitopes have been linked to specific clinical manifestations and their detection is embedded in some of the diagnostic criteria for AE.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
To summarise the clinical characteristics, radiological features, treatments and prognosis of patients with myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) overlapped with NMDA receptor (NMDAR) encephalitis. We retrospectively analysed patients who exhibited dual positivity for MOG antibodies and NMDAR antibodies in serum/CSF from Jan 2018 to Jun 2023. Ten patients with MOGAD and NMDAR encephalitis were enrolled.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Background: Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE) is a prevalent type of autoimmune encephalitis caused by antibodies targeting the NMDAR's GluN1 subunit. While significant progress has been made in elucidating the pathophysiology of autoimmune diseases, the immunological mechanisms underlying anti-NMDARE remain elusive. This study aimed to characterize immune cell interactions and dysregulation in anti-NMDARE by leveraging single-cell multi-omics sequencing technologies.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
Background: Seizures, including status epilepticus (SE), are common in anti-NMDA receptor encephalitis (NMDARE). We aimed to describe clinical and electrographic features of patients with seizures with NMDARE, determine factors associated with SE, and describe long-term seizure outcomes.
Methods: We retrospectively identified patients with seizures in the setting of NMDARE treated at inpatient Mayo Clinic sites during the acute phase of encephalitis between October 2008 and March 2023.
Pharmaceuticals (Basel)
December 2024
School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AJ, UK.
Recent studies, typically using patient cerebrospinal fluid (CSF), have suggested that different autoantibodies (Aabs) acting on their respective receptors, may underlie neuropsychiatric disorders. The GluN1 (NR1) subunit of the N-methyl-D-aspartate receptor (NMDAR) has been identified as a target of anti-NMDAR Aabs in a number of central nervous system (CNS) diseases, including encephalitis and autoimmune epilepsy. However, the role or the nature of Aabs responsible for effects on neuronal excitability and synaptic plasticity is yet to be established fully.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!