Bisphenol A (BPA), diethyl phthalate (DEP), and carbamazepine (CBZ) have been widely used in chemical and pharmaceutical fields, and their residues are detected in various environments. Therefore, to find a suitable method for removing the compounds from an aqueous solution, an adsorption method by granular activated charcoal (AC) was studied. To investigate the adsorption properties of AC, its kinetics, equilibrium, pH effects, and regeneration of AC were examined. Moreover, its surface properties (i.e., surface area, pore volume, functional groups, and surface charge) were characterized by N adsorption and desorption isotherm, Fourier transform infrared (FTIR), and zeta potential analyses. Experimental results show that AC has high removal efficiencies for the target compounds at the low initial concentration as well as high estimated adsorption capacities (q) for DEP, BPA, and CBZ, whose values were 293.4 ± 18.8, 254.9 ± 16.2, and 153.3 ± 1.61 mg/g, respectively. In comparison with other adsorbents based on previously reported results, AC was shown to have generally higher removability for the three compounds than others. Moreover, it was observed that AC's ability to adsorb DEP and BPA was dependent on pH because of hydrolysis and ionization, respectively. Meanwhile, there is no pH effect for CBZ adsorption by AC. After 3 cycles of adsorption/desorption, AC still maintained 92, 100, and 82% of initial adsorption capacities for DEP, BPA, and CBZ, respectively. Therefore, the AC is an effective adsorbent for the removal of endocrine-disrupting chemicals and pharmaceuticals from aqueous solution.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-2617-7DOI Listing

Publication Analysis

Top Keywords

aqueous solution
12
dep bpa
12
removal endocrine-disrupting
8
activated charcoal
8
kinetics equilibrium
8
adsorption capacities
8
capacities dep
8
bpa cbz
8
adsorption
6
adsorptive removal
4

Similar Publications

Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties.

View Article and Find Full Text PDF

Anionic modulation induces molecular polarity in a three-component crown ether system.

Dalton Trans

January 2025

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.

Three-component crown ether phase change materials are characterized by a structural phase change in response to external stimuli such as temperature and electric or magnetic fields, resulting in significant changes in physical properties. In this work, we designed and synthesized two novel host-guest crown ether molecules [(PTFMA)(15-crown-5)ClO] (1) and [(PTFMA)(15-crown-5)PF] (2), through the reaction of -trifluoromethylaniline (PTFMA) with 15-crown-5 in perchloric acid or hexafluorophosphoric acid aqueous solution. Compound 1 undergoes a structural change from the non-centrosymmetric space group (2) to the centrosymmetric space group (2/) with increasing temperature.

View Article and Find Full Text PDF

Acid-Base Equilibrium of 5,5,6-Trihydroxy-6-Methyldihydropyrimidine-2,4(1,3)-Dione in the Gas Phase and in Water.

J Phys Chem A

January 2025

Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Laboratory of Physicochemical Methods of Analysis, 69 Prospekt Oktyabrya, Ufa 450054, Russian Federation.

The first-stage acid-base equilibrium of 5,5,6-trihydroxy-6-methyldihydropyrimidine-2,4(1,3)-dione was studied for the first time in aqueous solutions. Its constant (pK = 9.23 ± 0.

View Article and Find Full Text PDF

In this study, an optical sensor, JA/(2,6-di((E)-benzylidene)cyclohexan-1-one), was synthesized and characterized using H NMR and FT-IR spectroscopy. The sensor exhibited high efficiency and selectivity in detecting Pb ions, even in the presence of potential interfering ions such as Mn, Cu, Co, Cr, Ni, Ce, Hg, and Cd in aqueous solutions. The interaction of JA with Pb resulted in a significant enhancement of fluorescence intensity, suggesting the formation of a stable complex.

View Article and Find Full Text PDF

The selection of a biomaterial plays a very important role for the development of scaffolds for biomedical applications. Amidst, the development of nanofibrous scaffolds through electrospinning technique by selecting a suitable polymer is of more importance. Poly (2-ethyl-2-oxazoline) (PEOX) is one among the selected polymers that can be employed for electrospinning for the development of scaffolds for biomedical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!