1-Methyl-D-tryptophan (1-MT) is extensively utilized in preclinical trials to deplete indoleamine 2,3-dioxigenase (IDO) activity and kynurenine pathway. Since IDO related signaling pathways aren't well understood, some clinical reports affirmed IDO inhibiting therapeutic significance. Therefore, we did use direct tumor autologous antigens vaccination and 1-MT without chemotherapy to explore biological mechanisms and immunomodulations of 1-MT that motivate antitumor responses. However, DCs antigen-uptake capability, anti-tumor efficiency, intra-tumor and intracellular cytokines were assessed. Besides, CD133+ cells viability and tumor biomarkers were investigated. Splenocytes responses and their signaling pathways such TLRs 2 to 9, NF-κβ1-2, Wnt/β-catenin and TGF-β were dissected. Results evinced that a regimen of 1-MT and TAAs significantly reduced CSC CD133 + viability inside tumor microenvironment, besides increasing tumor cells necrosis and apoptosis. Expression of TGF-β, IDO, RANTES, and PDL-1 was also significantly reduced. Interestingly, 1-MT enhanced lymphocytes TLR2, TLR7, TLR8, and TLR9 pathways. It motivated lymphocytes' NF-κβ2, STAT3, and STAT4 pathways, while reduced tumors' NF-κβp65 and Wnt/β-catenin signaling pathways. We found that periphery and intra-tumor Treg cells were significantly decreased. In conclusion, depletion of indoleamine 2,3-dioxigenase activity evidenced IDO relation with tumor stem cells proliferation pathways. Furthermore, 1-MT supports immunotherapeutic vaccines susceptibility and tumor specific targeting by reducing tumorgensis signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6026162 | PMC |
http://dx.doi.org/10.1038/s41598-018-28238-8 | DOI Listing |
Over the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of and -family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications.
View Article and Find Full Text PDFiScience
January 2025
Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.
The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China.
Ovarian cancer (OC) remains one of the most lethal gynecological malignancies, largely due to its late-stage diagnosis and high recurrence rates. Chronic inflammation is a critical driver of OC progression, contributing to immune evasion, tumor growth, and metastasis. Inflammatory cytokines, including IL-6, TNF-α, and IL-8, as well as key signaling pathways such as nuclear factor kappa B (NF-kB) and signal transducer and activator of transcription 3 (STAT3), are upregulated in OC, promoting a tumor-promoting environment.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
Background: Chronic kidney disease (CKD) is a progressive condition that arises from diverse etiological factors, resulting in structural alterations and functional impairment of the kidneys. We aimed to establish the Anoikis-related gene signature in CKD by bioinformatics analysis.
Methods: We retrieved 3 datasets from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs), followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) of them, which were intersected with Anoikis-related genes (ARGs) to derive Anoikis-related differentially expressed genes (ARDEGs).
The strong correlation between reproductive life cycle type and chromosome numbers in green plants has been a long-standing mystery in evolutionary biology. Within green plants, the derived condition of heterosporous reproduction has emerged from the ancestral condition of homospory in disparate locations on the phylogenetic tree at least 11 times, of which three lineages are extant. In all green plant lineages where heterospory has emerged, there has been a significant downsizing in chromosome numbers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!