Cerebral ischemia/reperfusion injury (IRI) is a serious complication during the treatment of stroke patients with very few effective clinical treatment. Hydrogen (H2) can protect mitochondria function and have favorable therapeutic effects on cerebral IRI. Mitophagy plays an important role in eliminating damaged or dysfunctional mitochondria and maintaining mitochondria homeostasis. However, whether the protection of H2 on cerebral IRI is via regulating mitophagy is still unknown. In this study, OGD/R damaged hippocampal neurons were used to mimic cerebral IRI in vivo and we detected the effect of H2, Rap (autophagy activator) and 3-MA (autophagy inhibitor) on OGD/R neurons. The results of MTT indicated that H2 and RAP could increase cell viability after OGD/R treatment, while 3-MA further aggravated injury and inhibited the protection of H2 and RAP. Furthermore, the intracellular ROS and apoptosis ratio were determined, the results showed that ROS and apoptosis level significantly increased after OGD/R, H2 and RAP effectively restrained the increment of ROS level and apoptosis ratio but their protective effect can be weakened by 3-MA. Mitochondrial membrane potential (MMP) and mitophagy level were also determined, the data showed that H2 and RAP protected against the loss of MPP and increased the co-localization of mitochondria with GFP-LC3 while 3-MA exerted antagonistic effect. At last, the mitophagy-related factors LC3, PINK1 and Parkin expression were detected and analyzed. We found that the expression of LC3 was increased after OGD/R which can be further enhanced by H2 and RAP treatment, but treatment with 3-MA was opposite. The result revealed H2 and RAP could activate mitophagy while 3-MA inhibit mitophagy. In addition, the study found H2 and RAP could significantly induce the expression of PINK1 and Parkin in OGD/R neurons which was inhibited by 3-MA. Taken together, our findings demonstrated H2 had a neuroprotective effect on OGD/R damaged neurons by protecting mitochondrial function and the potential protection mechanism may closely related to enhancement of mitophagy mediated by PINK1/Parkin signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2018.06.028 | DOI Listing |
Life Sci
January 2025
Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China. Electronic address:
Aims: Cerebral ischemia-reperfusion injury (CIRI) exacerbates post-stroke brain damage. We aimed to understand the role of glucose-6-phosphate dehydrogenase (G6PD) in CIRI and mitophagy.
Materials And Methods: Lentivirus and small interfering RNA were utilized to suppress G6PD in tissues and cells, leading to the establishment of in vivo and in vitro models of ischemia-reperfusion following middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/ reoxygenation (OGD/R).
Phytomedicine
January 2025
Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Key Laboratory of Rehabilitation, Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou 325024, Zhejiang, China. Electronic address:
Background: Neonatal hypoxic-ischemic encephalopathy (HIE) has a high incidence and mortality rate, representing a significant patient burden. Therefore, treatment strategies that work synergistically with hypothermic therapies are urgently required. Punicalagin (PUN) is a natural and safe polyphenol with anti-inflammatory functions whose excellent water solubility and safety make it an advantageous perinatal medication.
View Article and Find Full Text PDFJ Stroke Cerebrovasc Dis
January 2025
Department of Gerontology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China. Electronic address:
Objective: Hirudin has shown potential in promoting angiogenesis and providing neuroprotection in ischemic stroke; however, its therapeutic role in promoting cerebrovascular angiogenesis remains unclear. In this study, we aimed to investigate whether hirudin exerts neuroprotective effects by promoting angiogenesis through the regulation of the Wnt/β-catenin signaling pathway.
Methods: An in vitro model of glucose and oxygen deprivation/reperfusion (OGD/R) was established using rat brain microvascular endothelial cells (BMECs).
Eur J Pharmacol
January 2025
Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China. Electronic address:
Dihydrotanshinone I (DHT) is an active ingredient derived from Salvia miltiorrhiza. Previous studies have demonstrated that DHT can improve cardiac function in rats with myocardial ischemia-reperfusion injury (IR). However, the mechanism by which DHT improves myocardial injury in rats still requires further research.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Neurosurgery, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China; Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China. Electronic address:
Currently, stroke is a disease with high disability and mortality risks and no effective treatment. The pathogenesis and molecular mechanisms of neuronal damage in stroke are highly complex. Pyroptosis participates in neuronal death after stroke.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!