Exposure of protein modified surfaces to air may be necessary in several applications. For example, air contact may be inevitable during the implantation of biomedical devices, for analysis of protein modified surfaces, or for sensor applications. Protein coatings are very sensitive to dehydration and can undergo significant and irreversible alterations of their conformations upon exposure to air. With the use of two compatible solutes from extremophilic bacteria, ectoine and hydroxyectoine, the authors were able to preserve the activity of dried protein monolayers for up to >24 h. The protective effect can be explained by the preferred exclusion model; i.e., the solutes trap a thin water layer around the protein, retaining an aqueous environment and preventing unfolding of the protein. Horseradish peroxidase (HRP) immobilized on compact TiO was used as a model system. Structural differences between the compatible solute stabilized and unstabilized protein films, and between different solutes, were analyzed by static time-of-flight secondary ion mass spectrometry (ToF-SIMS). The biological activity difference observed in a colorimetric activity assay was correlated to changes in protein conformation by application of principal component analysis to the static ToF-SIMS data. Additionally, rehydration of the denatured HRP was observed in ToF-SIMS with an exposure of denatured protein coatings to ectoine and hydroxyectoine solutions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6026024 | PMC |
http://dx.doi.org/10.1116/1.5031189 | DOI Listing |
J Dent Sci
December 2024
Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan.
Background/purpose: Titanium (Ti) is extensively used in dental and orthopedic implants due to its excellent mechanical properties. However, its smooth and biologically inert surface does not support the ingrowth of new bone, and Ti ions may have adverse biological effects. The purpose is to improve the corrosion resistance of titanium and create a 3D structured coating to enhance osseointegration through a very simple and fast surface treatment.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Phayathai Road Pathumwan, 10330, Thailand.
This study presents a new highly sensitive and specific time-resolved fluoroimmunoassay (TRFIA) for the measurement of trace amounts of the urinary 8-hydroxy-2`-deoxyguanosine (8-OHdG) which is a biomarker for oxidative stress on DNA. The assay relied on a competitive binding approach and a mouse monoclonal antibody which recognized 8-OHdG with high specificity. In this assay, 8-OHdG conjugated with bovine serum albumin protein (8-OHdG-BSA) was employed as a solid phase antigen.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany.
We present two innovative approaches to investigate the dynamics of membrane fusion and the strength of protein-membrane interactions. The first approach employs pore-spanning membranes (PSMs), which allow for the observation of protein-assisted fusion processes. The second approach utilizes colloidal probe microscopy with membrane-coated probes with reconstituted proteins.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:
Dressings are prone to adhering to new tissues, leading to secondary harm to the wound during dressing replacement. To address this issue, many strategies have been proposed to endow dressings with anti-adhesive functions. However, the introduction of exogenous agents or stimuli is always needed, and difficulty in achieving adaptive removal is also present.
View Article and Find Full Text PDFAmplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!