Value of sample information in dynamic, structurally uncertain resource systems.

PLoS One

Wetland and Aquatic Research Center, U.S. Geological Survey, Gainesville, FL, United States of America.

Published: April 2019

Few if any natural resource systems are completely understood and fully observed. Instead, there almost always is uncertainty about the way a system works and its status at any given time, which can limit effective management. A natural approach to uncertainty is to allocate time and effort to the collection of additional data, on the reasonable assumption that more information will facilitate better understanding and lead to better management. But the collection of more data, either through observation or investigation, requires time and effort that often can be put to other conservation activities. An important question is whether the use of limited resources to improve understanding is justified by the resulting potential for improved management. In this paper we address directly a change in value from new information collected through investigation. We frame the value of information in terms of learning through the management process itself, as well as learning through investigations that are external to the management process but add to our base of understanding. We provide a conceptual framework and metrics for this issue, and illustrate them with examples involving Florida scrub-jays (Aphelocoma coerulescens).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025880PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199326PLOS

Publication Analysis

Top Keywords

resource systems
8
time effort
8
management process
8
management
5
sample dynamic
4
dynamic structurally
4
structurally uncertain
4
uncertain resource
4
systems natural
4
natural resource
4

Similar Publications

Pathways to One Health: Enhancing Inter-Sectoral Collaboration in Pakistan.

Ecohealth

January 2025

Health Services Academy, Chak Shahzad, Park Road, Islamabad, 44000, Pakistan.

One Health is an integrative approach aiming to achieve optimal health outcomes by recognizing the interconnection between humans, animals, and the environment. This study explores the understanding, perspectives, hurdles, and implications of intersectoral collaboration within Pakistan's human health system, focusing on One Health principles. A qualitative phenomenological approach was employed, involving 17 key informant interviews with purposively selected stakeholders from public health, agriculture, veterinary medicine, agriculture and environmental science.

View Article and Find Full Text PDF

Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.

View Article and Find Full Text PDF

Exploring policy processes against microbial threats in Iran: a qualitative policy analysis.

BMJ Open

January 2025

Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of).

Objectives: Microbial threats pose a growing concern worldwide. This paper reports the analysis of Iran's policy process against microbial threats.

Design: This is a qualitative study.

View Article and Find Full Text PDF

Two types of heavy precipitation in the southeastern Tibetan Plateau.

Sci Bull (Beijing)

December 2024

Alpine Paleoecology and Human Adaptation Group (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.

The southeastern Tibetan Plateau (SETP) is the preeminent summer heavy precipitation region within the Tibetan Plateau (TP). However, the large-scale circulation types and dynamics driving summer heavy precipitation in the SETP remain inadequately elucidated. Using the hierarchical clustering method, two distinctive atmospheric circulation patterns associated with heavy precipitation were identified: the Tibetan Plateau vortex type (TPVT, constituting 56.

View Article and Find Full Text PDF

Paleogenomic research reintroduces extinct East Asian aurochs to our sights.

Sci Bull (Beijing)

December 2024

Group of Alpine Paleoecology and Human Adaptation (ALPHA), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!