Background: 5-fluorouracil (5-FU) is widely used for the treatment of renal carcinoma. However, drug resistance remains the reason for failure of chemotherapy. Oridonin, extracted from Chinese herb medicine, displays anti-tumor effect in several types of cancer. Whether oridonin could enhance the effect of 5-FU in renal carcinoma has not been studied.

Methods: 786-O cells were used in the current study. Cell death was measured by MTT assay or live- and dead-cell staining assay. Glutathione (GSH) level was examined by ELISA. Necroptosis was identified by protein levels of receptors interaction protein-1 (RIP-1) and RIP-3, lactate dehydrogenase (LDH) and high mobility group box-1 protein (HMGB1) release, and poly [ADP-ribose] polymerase-1 (Parp-1) activity. Using a xenograft assay in nude mice, we tested the anti-tumor effects of the oridonin combined with 5-FU.

Results: 5-FU only induced apoptosis in 786-O cells. Oridonin activated both apoptosis and necroptosis in 786-O cells. Oridonin-induced necroptosis was reversed by addition of GSH or its precursorN-acetylcysteine (NAC). Oridonin-induced necroptosis was associated by activated JNK, p38, and ERK in 786-O cells, which were abolished by GSH or NAC treatment. However, JNK, p38, and ERK inhibitors showed no effect on oridonin induced-cell death. GSH or NAC treatment partly abolished the synergistic effects of oridonin and 5-FU on cell death. Oridonin enhanced the cytotoxicity of 5-FU both in vitro and in vivo.

Conclusion: Oridonin enhances the cytotoxicity of 5-FU in renal cancer cells partially through inducing necroptosis, providing evidence of using necroptosis inducers in combination with chemotherapeutic agents for cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2018.06.111DOI Listing

Publication Analysis

Top Keywords

786-o cells
16
cytotoxicity 5-fu
12
5-fu renal
12
renal carcinoma
12
oridonin
9
oridonin enhances
8
enhances cytotoxicity
8
cell death
8
effects oridonin
8
oridonin-induced necroptosis
8

Similar Publications

Sensitivity of renal cell carcinoma to cuproptosis: a bioinformatics analysis and experimental verification.

J Cancer

January 2025

Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.

Targeting cuproptosis is considered as a promising therapeutic strategy for the prevention of tumors. However, the potential role of cuproptosis and its related genes in clear cell renal cell carcinoma (ccRCC) remains elusive. The present study aims to explore the sensitivity of ccRCC to cuproptosis and its underlying mechanism.

View Article and Find Full Text PDF

CASP5 associated with PANoptosis promotes tumorigenesis and progression of clear cell renal cell carcinoma.

Cancer Cell Int

January 2025

Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, 116044, China.

Clear cell renal cell carcinoma (ccRCC) is a globally severe cancer with an unfavorable prognosis. PANoptosis, a form of cell death regulated by PANoptosomes, plays a role in numerous cancer types. However, the specific roles of genes associated with PANoptosis in the development and advancement of ccRCC remain unclear.

View Article and Find Full Text PDF

Elucidating the anticancer potential of dendrobine in renal cell carcinoma treatment.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, No.1111 Xian Xia Road, Shanghai, 200336, China.

Renal cell carcinoma (RCC) is the predominant form of kidney cancer. Despite the significant improvements in survival rates for advanced RCC patients due to targeted therapy and immunotherapy, challenges such as drug resistance and severe adverse reactions continue to hinder effective management. Therefore, there is an urgent need to identify new therapeutic agents for RCC.

View Article and Find Full Text PDF

Discovery and optimization of 1,2,4-triazole derivatives as novel ferroptosis inhibitors.

Eur J Med Chem

December 2024

Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Department of Urology and Department of Cancer Center of the Second Affiliated Hospital, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China. Electronic address:

Ferroptosis is a novel form of regulated cell death characterized by iron-dependent lipid ROS accumulation, which is associated with various diseases, including acute organ injury, neurodegenerative disorders, and cancer. Pharmacological inhibition of ferroptosis has great potential for the treatment of these diseases. However, the clinical translation of many ferroptosis inhibitors is hindered by their inadequate activity or suboptimal pharmacokinetic profiles.

View Article and Find Full Text PDF

Background: Histone deacetylase (HDAC) inhibitors have been reported to exhibit immunomodulatory activities, including the upregulation of major histocompatibility complex class I (MHC class I). Although the immunoproteasome plays a pivotal role in MHC class I antigen presentation, its effect on immunotherapy for clear cell renal cell carcinoma (ccRCC) remains unclear.

Methods: This study assessed whether OBP-801, a novel HDAC inhibitor, affects the expression of immunoproteasome subunits and subsequently the MHC class-I-mediated anti-cancer immunity in ccRCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!