Cryopreservation represents one if not the only long-term option for tissue and perhaps future organ banking. In one particular approach, cryopreservation is achieved by completely avoiding ice formation (or crystallization) through a process called vitrification. This "ice-free" approach to tissue banking requires a combination of high-concentration cryoprotective additives such as M22 (9.4 M), VS55 (8.4 M), or DP6 (6 M) and sufficiently fast rates of cooling and warming to avoid crystallization. In this article, we report the temperature-dependent specific heat capacity of the above-mentioned cryoprotective additives in small volumes (10 mg sample pans) at rates of 5°C/min and 10°C/min using a commercially available differential scanning calorimetry (TA Instruments Q1000), in the temperature range of -150°C to 30°C. This data can be utilized in heat-transfer models to predict thermal histories in a cryopreservation protocol. More specifically, the effects of temperature dependence of specific heat due to the presence of three different phases (liquid, ice, and vitreous phase) can dramatically impact the thermal history and therefore the outcome of the cryopreservation procedure. The crystallization potential of these cryoprotectants was also investigated by studying cases of maximal and minimal crystallization in VS55 and DP6, where M22 did not crystallize under any rates tested. To further reduce crystallization in VS55 and DP6, a stabilizing sugar (sucrose) was added in varying concentrations (0.15 M and 0.6 M) and was shown to further reduce crystallization, particularly in VS55, at modest rates of cooling (1°C/min, 5°C/min, and 10°C/min).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/bio.2018.0006 | DOI Listing |
Cryo Letters
January 2023
Department of Mechanical Engineering; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455 USA.
Cryopreservation by vitrification to achieve an "ice free" glassy state is an effective technique for preserving biomaterials including cells, tissues, and potentially even whole organs. The major challenges in cooling to and rewarming from a vitrified state remain ice crystallization and cracking/fracture. Ice crystallization can be inhibited by the use of cryoprotective agents (CPAs), though the inhibition further depends upon the rates achieved during cooling and rewarming.
View Article and Find Full Text PDFCryobiology
June 2022
Department of Engineering Technologies, Safety, and Construction, Central Washington University, 400 E. University Way, Ellensburg, WA, 98926, USA. Electronic address:
DP6, VS55 and M22 are the most commonly used cryoprotective agent (CPA) cocktails for vitrification experiments in tissues and organs. However, complete phase diagrams for the three CPAs are often unavailable or incomplete (only available for full strength CPAs) thereby hampering optimization of vitrification and rewarming procedures. In this paper, we used differential scanning calorimetry (DSC) to measure the transition temperatures including heterogeneous nucleation temperatures (T), glass transition temperatures (T), rewarming phase crystallization (devitrification and/or recrystallization) temperatures (T) and melting temperatures (T) while cooling or warming the CPA sample at 5 °C/min and plotted the obtained transition temperatures for different concentrations of CPAs into the phase diagrams.
View Article and Find Full Text PDFPLoS One
October 2020
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.
The objective of this study is to provide thermal conductivity data for CPA-based nanofluids for the benefit of the analyses of cryopreservation by vitrification. Thermal conductivity measurements were conducted using a hot-wire technique on an experimentation platform of the cryomacroscope, to correlate measurements with observed physical effects such as crystallization and fracturing. Tested materials in this study include the CPA cocktails M22, VS55, DP6, and DP6+sucrose.
View Article and Find Full Text PDFBiopreserv Biobank
August 2018
1 Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota.
Cryopreservation represents one if not the only long-term option for tissue and perhaps future organ banking. In one particular approach, cryopreservation is achieved by completely avoiding ice formation (or crystallization) through a process called vitrification. This "ice-free" approach to tissue banking requires a combination of high-concentration cryoprotective additives such as M22 (9.
View Article and Find Full Text PDFSci Transl Med
March 2017
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
Vitrification, a kinetic process of liquid solidification into glass, poses many potential benefits for tissue cryopreservation including indefinite storage, banking, and facilitation of tissue matching for transplantation. To date, however, successful rewarming of tissues vitrified in VS55, a cryoprotectant solution, can only be achieved by convective warming of small volumes on the order of 1 ml. Successful rewarming requires both uniform and fast rates to reduce thermal mechanical stress and cracks, and to prevent rewarming phase crystallization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!