Background: Alcohol exposure during pregnancy can kill developing neurons and lead to fetal alcohol spectrum disorder (FASD). However, affected individuals differ in their regional patterns of alcohol-induced neuropathology. Because neuroprotective genes are expressed in spatially selective ways, their mutation could increase the vulnerability of some brain regions, but not others, to alcohol teratogenicity. The objective of this study was to determine whether a null mutation of neuronal nitric oxide synthase (nNOS) can increase the vulnerability of some brain regions, but not others, to alcohol-induced neuronal losses.

Methods: Immunohistochemistry identified brain regions in which nNOS is present or absent throughout postnatal development. Mice genetically deficient for nNOS (nNOS ) and wild-type controls received alcohol (0.0, 2.2, or 4.4 mg/g/d) over postnatal days (PD) 4 to 9. Mice were sacrificed in adulthood (~PD 115), and surviving neurons in the olfactory bulb granular layer and brain stem facial nucleus were quantified stereologically.

Results: nNOS was expressed throughout postnatal development in olfactory bulb granule cells but was never expressed in the facial nucleus. In wild-type mice, alcohol reduced neuronal survival to similar degrees in both cell populations. However, null mutation of nNOS more than doubled alcohol-induced cell death in the olfactory bulb granule cells, while the mutation had no effect on the facial nucleus neurons. As a result, in nNOS mice, alcohol caused substantially more cell loss in the olfactory bulb than in the facial nucleus.

Conclusions: Mutation of the nNOS gene substantially increases vulnerability to alcohol-induced cell loss in a brain region where the gene is expressed (olfactory bulb), but not in a separate brain region, where the gene is not expressed (facial nucleus). Thus, differences in genotype may explain why some individuals are vulnerable to FASD, while others are not, and may determine the specific patterns of neuropathology in children with FASD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445660PMC
http://dx.doi.org/10.1111/acer.13824DOI Listing

Publication Analysis

Top Keywords

olfactory bulb
20
facial nucleus
16
brain regions
12
regional patterns
8
patterns alcohol-induced
8
alcohol-induced neuronal
8
fetal alcohol
8
alcohol spectrum
8
spectrum disorder
8
increase vulnerability
8

Similar Publications

Inducing multiple neurobehavioural and neurochemical deficits, olfactory bulbectomy (OBX) has been developed as a rodent model of depression with potential for antidepressant drug screening. However, the generality of this model in other vertebrate taxa remains poorly understood. A small freshwater teleost fish, the zebrafish (Danio rerio), is rapidly becoming a common model species in neuroscience research.

View Article and Find Full Text PDF

Alprazolam (Alp), a triazolobenzodiazepine, is widely prescribed for the treatment of sleep disorders, anxiety, and panic disorder. While oral administration remains the standard route, its slow onset of action has prompted interest in intranasal delivery as an alternative, offers the potential for direct drug delivery to the brain. This study aims to develop a fast-acting intranasal formulation of Alp (Alp-nd).

View Article and Find Full Text PDF

Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.

View Article and Find Full Text PDF

Linking Adult Olfactory Neurogenesis to Social Reproductive Stimuli: Mechanisms and Functions.

Int J Mol Sci

December 2024

Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy.

Over the last three decades, adult neurogenesis in mammals has been a central focus of neurobiological research, providing insights into brain plasticity and function. However, interest in this field has recently waned due to challenges in translating findings into regenerative applications and the ongoing debate about the persistence of this phenomenon in the adult human brain. Despite these hurdles, significant progress has been made in understanding how adult neurogenesis plays a critical role in the adaptation of brain circuits to environmental stimuli regulating key brain functions.

View Article and Find Full Text PDF

Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!