Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ability to modify chemical bonding in dense heterogeneous solid mixtures by applying high pressure and temperature opens new opportunities to develop a greater number of novel materials with controlled structure, stability and exceptional physical properties. Here, we present the transformation of highly strained CO-III (Cmca) filled in porous low-density carbons (LDC) to extended CO-V (I-42d) encapsulated in porous diamond (Fd-3m) at high pressures and temperatures. The x-ray diffraction data indicates the density of porous diamond is about 5%-8% lower than that of bulk diamond and undergoes the structural distortion to monoclinic diamond (C2/m or M-carbon) upon pressure unloading. This result, therefore, demonstrates a feasibility to use porous LDC as nm-scale reactors to synthesize and store carbon dioxide and other high energy density extended solids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/aad02c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!