Reducing fumigant emissions is essential for minimizing the environmental impacts of pre-plant soil fumigation. Low permeability plastic films are effective at reducing emissions but have high initial purchase, installation, and disposal costs. The objective of this study was to evaluate if deep fumigant injection and biochar soil amendments can reduce emissions, improve fumigant distribution in soil, and provide acceptable control of plant parasitic nematodes. A pre-plant soil fumigation trial was conducted in a commercial orchard in the San Joaquin Valley, CA, USA. Treatments included two rates of Telone C-35 (a mixture of 1,3-dichloropropene and chloropicrin) under totally impermeable film or with no surface seal, two injection depths (45 or 65 cm), and two biochar rates (20 or 40 ton ha). Emission rates were generally low due to rain events encountered during the trial, but data clearly showed that the deep injection enhanced fumigant delivery to depths below 60 cm and resulted in significantly lower peak emission compared to the standard injection depth. Biochar applied at 40 ton ha had the lowest emission rates during 1-month monitoring period. Although variability in nematode survival was high, tarped, deep injection, and biochar treatment showed lower survival of nematodes at various depths. Increase in fumigant persistence, especially chloropicrin, was observed in this study, likely due to the high soil moisture and low temperature. All data indicate that biochar amendments can help reduce fumigant emissions without reducing nematode control; however, additional research is needed to optimize treatments, determine the affordability of various biochar materials, and validate results under a range of field conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2018.06.031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!