This chapter covers methods that are useful for the in vitro culture and live-cell study of insect spermatocytes in general and of crane-fly spermatocytes in particular. The merits of crane-fly spermatocytes are detailed in the Introduction section. In the following sections, step-by-step instructions are given for optimizing visualization of meiotic events taking place within living spermatocytes by employing microaspiration to flatten cells and then in subsequent operations to manipulate them via microinjection. Emphasis is on the attributes of ionophoretic injection as a way of introducing fluorescently conjugated proteins into the cytoplasm of flattened spermatocytes. In the last section of this chapter, the presentation of pressure injection is an alternative for delivering cell permeable probes into the interstitial space surrounding spermatocytes within in vitro preparations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mcb.2018.03.027 | DOI Listing |
Genes (Basel)
November 2024
Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Background/objectives: We analyzed the relationship between synapsis, recombination, and transcription during the spermatogenesis of the grasshopper carrying B chromosomes (type B1).
Methods: The progression of synapsis was interpreted according to the dynamics of the cohesin subunit SMC3 axes. DNA double-strand breaks were revealed by RAD51 immunolabeling, while transcriptional activity was determined by the presence of RNA polymerase II phosphorylated at serine 2 (pRNApol II) immunolabeling.
Glucose-6-Phosphatase (G6Pase), a key enzyme in gluconeogenesis and glycogenolysis in the mammalian liver and kidney, converts glucose-6-phosphate to glucose for maintaining systemic blood glucose homeostasis during nutrient deprivation. However, its function has remained elusive in insects, which have no need for G6Pase in sugar homeostasis since they convert glucose-6-phosphate to trehalose, their main circulating sugar, via trehalose phosphate synthase (TPS1). In this study we identify an unexpected and essential requirement for G6Pase in male fertility, specifically to produce motile sperm.
View Article and Find Full Text PDFPLoS One
December 2024
Biology Department, York University, North York, Ontario, Canada.
Chromosome movement speeds during anaphase are regulated by depolymerization of microtubules. Several models describe chromosome movement during cell division but none of them consider post-translational modifications of tubulin, even though such modifications help specify microtubules for unique cellular activities. Among these modifications, acetylation of Lysine 40 is one of the common post-translational modifications.
View Article and Find Full Text PDFCommun Biol
October 2024
Department of Genetics, University of Szeged, Szeged, Hungary.
The initiation of microtubule formation is facilitated by γ-tubulin and γ-Tubulin Ring Complex (γ-TuRC) in various microtubule-organizing centers (MTOCs). While the heterogeneity of tissue-specific MTOCs and γ-TuRC in Drosophila testis has been described, their molecular composition and physiological significance are poorly understood. We investigated the testis-specific distribution and biochemical interaction of the canonical γ-TuRC proteins Grip163 and Grip84.
View Article and Find Full Text PDFGenes Dev
October 2024
Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!