Mitotic live-cell imaging at different timescales.

Methods Cell Biol

Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland. Electronic address:

Published: December 2018

Mitosis is a highly dynamic and choreographed process in which chromosomes are captured by the mitotic spindle and physically segregated into the two daughter cells to ensure faithful transmission of the genetic material. Live-cell fluorescence microscopy enables these dynamics to be analyzed over diverse temporal scales. Here we present the methodologies to study chromosome segregation at three timescales: we first show how automated tracking of kinetochores enables investigation of mitotic spindle and chromosome dynamics in the seconds-to-minutes timescale; next we highlight how new DNA live dyes allow the study of chromosome segregation over a period of several hours in any cell line; finally, we demonstrate how image sequences acquired over several days can reveal the fate of whole cell populations over several consecutive cell divisions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mcb.2018.03.009DOI Listing

Publication Analysis

Top Keywords

mitotic spindle
8
study chromosome
8
chromosome segregation
8
mitotic live-cell
4
live-cell imaging
4
imaging timescales
4
timescales mitosis
4
mitosis highly
4
highly dynamic
4
dynamic choreographed
4

Similar Publications

Epstein-Barr virus (EBV), an oncogenic gamma-herpesvirus, belongs to group 1 carcinogen and is implicated in various cancers, including gastric cancer. Aurora Kinase A is a major mitotic protein kinase that regulates mitotic progression; overexpression and hyperactivation of AURKA commonly promote genomic instability in many tumours. However, the relationship of functional residues of AURKA and EBV in gastric cancer progression remains unknown.

View Article and Find Full Text PDF

Background: Peritumoral lidocaine infiltration prior to excision is associated with better survival in breast cancer (BC), which led us to hypothesize that innervation to the tumor affects its biology and patient survival. Activity-regulated cytoskeleton-associated protein (ARC) gene expression is known to be regulated by neuronal activity. Therefore, we studied the clinical relevance of ARC gene expression as a surrogate of neuronal activity in BC.

View Article and Find Full Text PDF

Multi-SpinX: An advanced framework for automated tracking of mitotic spindles and kinetochores in multicellular environments.

Comput Biol Med

January 2025

Center for Cell Dynamics, School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom; The Alan Turing Institute, London, NW1 2DB, United Kingdom. Electronic address:

SpinX, an AI-guided spindle tracking software, allows the 3-dimensional (3D) tracking of metaphase spindle movements in mammalian cells. Using over 900 images of dividing cells, we create the Multi-SpinX framework to significantly expand SpinX's applications: a) to track spindles and cell cortex in multicellular environments, b) to combine two object tracking (spindle with kinetochores marked by centromeric probes) and c) to extend spindle tracking beyond metaphase to prometaphase and anaphase stages where spindle morphology is different. We have used a human-in-the-loop approach to assess our optimisation steps, to manually identify challenges and to build a robust computational pipeline for segmenting kinetochore pairs and spindles.

View Article and Find Full Text PDF

Centriolar cap proteins CP110 and CPAP control slow elongation of microtubule plus ends.

J Cell Biol

March 2025

Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

Centrioles are microtubule-based organelles required for the formation of centrosomes and cilia. Centriolar microtubules, unlike their cytosolic counterparts, are stable and grow very slowly, but the underlying mechanisms are poorly understood. Here, we reconstituted in vitro the interplay between the proteins that cap distal centriole ends and control their elongation: CP110, CEP97, and CPAP/SAS-4.

View Article and Find Full Text PDF

Insights into the role of phosphorylation on microtubule crosslinking by PRC1.

Mol Biol Cell

January 2025

Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

The mitotic spindle is composed of distinct networks of microtubules, including interpolar bundles that can bridge sister kinetochore fibers and bundles that organize the spindle midzone in anaphase. The crosslinking protein PRC1 can mediate such bundling interactions between antiparallel microtubules. PRC1 is a substrate of mitotic kinases including CDK/cyclin-B, suggesting that it can be phosphorylated in metaphase and dephosphorylated in anaphase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!