The binary neutron star (BNS) merger GW170817 was the first astrophysical source detected in gravitational waves and multiwavelength electromagnetic radiation. The almost simultaneous observation of a pulse of gamma rays proved that BNS mergers are associated with at least some short gamma-ray bursts (GRBs). However, the gamma-ray pulse was faint, casting doubt on the association of BNS mergers with the luminous, highly relativistic outflows of canonical short GRBs. Here we show that structured jets with a relativistic, energetic core surrounded by slower and less energetic wings produce afterglow emission that brightens characteristically with time, as recently seen in the afterglow of GW170817. Initially, we only see the relatively slow material moving towards us. As time passes, larger and larger sections of the outflow become visible, increasing the luminosity of the afterglow. The late appearance and increasing brightness of the multiwavelength afterglow of GW170817 allow us to constrain the geometry of its ejecta and thus reveal the presence of an off-axis jet pointing about 30° away from Earth. Our results confirm a single origin for BNS mergers and short GRBs: GW170817 produced a structured outflow with a highly relativistic core and a canonical short GRB. We did not see the bright burst because it was beamed away from Earth. However, approximately one in 20 mergers detected in gravitational waves will be accompanied by a bright, canonical short GRB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.120.241103 | DOI Listing |
Proc Natl Acad Sci U S A
April 2024
Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201.
Phys Rev Lett
December 2023
Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada.
We perform three-dimensional general-relativistic magnetohydrodynamic simulations with weak interactions of binary neutron-star (BNS) mergers resulting in a long-lived remnant neutron star, with properties typical of galactic BNS and consistent with those inferred for the first observed BNS merger GW170817. We demonstrate self-consistently that within ≲30 ms postmerger magnetized (σ∼5-10) incipient jets emerge with asymptotic Lorentz factor Γ∼5-10, which successfully break out from the merger debris within ≲20 ms. A fast (v≲0.
View Article and Find Full Text PDFNature
December 2022
Astronomical Institute of the Czech Academy of Sciences (ASU-CAS), Ondřejov, Czech Republic.
Gamma-ray bursts (GRBs) are divided into two populations; long GRBs that derive from the core collapse of massive stars (for example, ref. ) and short GRBs that form in the merger of two compact objects. Although it is common to divide the two populations at a gamma-ray duration of 2 s, classification based on duration does not always map to the progenitor.
View Article and Find Full Text PDFPhys Rev Lett
October 2022
Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Science, Nanjing 210023, China.
Phys Rev Lett
June 2018
Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, Colorado 81501, USA.
The binary neutron star (BNS) merger GW170817 was the first astrophysical source detected in gravitational waves and multiwavelength electromagnetic radiation. The almost simultaneous observation of a pulse of gamma rays proved that BNS mergers are associated with at least some short gamma-ray bursts (GRBs). However, the gamma-ray pulse was faint, casting doubt on the association of BNS mergers with the luminous, highly relativistic outflows of canonical short GRBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!