A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stability of Black Holes and the Speed of Gravitational Waves within Self-Tuning Cosmological Models. | LitMetric

Stability of Black Holes and the Speed of Gravitational Waves within Self-Tuning Cosmological Models.

Phys Rev Lett

Laboratoire de Physique Théorique, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91405 Orsay Cedex, France.

Published: June 2018

The gravitational wave event GW170817 together with its electromagnetic counterparts constrains the speed of gravity to be extremely close to that of light. We first show, on the example of an exact Schwarzschild-de Sitter solution of a specific beyond-Horndeski theory, that imposing the strict equality of these speeds in the asymptotic homogeneous Universe suffices to guarantee so even in the vicinity of the black hole, where large curvature and scalar-field gradients are present. We also find that the solution is stable in a range of the model parameters. We finally show that an infinite class of beyond-Horndeski models satisfying the equality of gravity and light speeds still provides an elegant self-tuning: the very large bare cosmological constant entering the Lagrangian is almost perfectly counterbalanced by the energy-momentum tensor of the scalar field, yielding a tiny observable effective cosmological constant.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.120.241101DOI Listing

Publication Analysis

Top Keywords

cosmological constant
8
stability black
4
black holes
4
holes speed
4
speed gravitational
4
gravitational waves
4
waves self-tuning
4
self-tuning cosmological
4
cosmological models
4
models gravitational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!