AI Article Synopsis

  • * KSbSe (KSS) is an exceptional material that can transition between two amorphous states and a crystalline state at relatively low temperatures (227 and 263 °C).
  • * These transitions in KSbSe result in different optical and electrical properties, indicating its potential for advanced computing applications, such as multistate logic circuits and reconfigurable devices.

Article Abstract

The phase-change (PC) materials in the majority of optical data storage media in use today exhibit a fast, reversible crystal → amorphous phase transition that allows them to be switched between on (1) and off (0) binary states. Solid-state inorganic materials with this property are relatively common, but those exhibiting an amorphous → amorphous transition called polyamorphism are exceptionally rare. KSbSe (KSS) reported here is the first example of a material that has both amorphous → amorphous polyamorphic transition and amorphous → crystal transition at easily accessible temperatures (227 and 263 °C, respectively). The transitions are associated with the atomic coordinative preferences of the atoms, and all three states of KSbSe are stable in air at 25 °C and 1 atm. All three states of KSbSe exhibit distinct optical bandgaps, E = 1.25, 1.0, and 0.74 eV, for the amorphous-II, amorphous-I, and crystalline versions, respectively. The room-temperature electrical conductivity increases by more than 2 orders of magnitude from amorphous-I to -II and by another 2 orders of magnitude from amorphous-II to the crystalline state. This extraordinary behavior suggests that a new class of materials exist which could provide multistate level systems to enable higher-order computing logic circuits, reconfigurable logic devices, and optical switches.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b05542DOI Listing

Publication Analysis

Top Keywords

→ amorphous
12
amorphous →
12
three states
8
states ksbse
8
orders magnitude
8
amorphous
6
multistates polyamorphism
4
polyamorphism phase-change
4
ksbse
4
phase-change ksbse
4

Similar Publications

The implantation of optical sensors is a promising method for monitoring physiological parameters of organisms in vivo. For this, suitable hydrogels are required that can provide a biocompatible interface with the organism's tissues. Amorphous hydrogel is advantageous for administration in animal organs due to its ease of injection compared to resilient analogs.

View Article and Find Full Text PDF

Stereotactic radiosurgery (SRS) is increasingly being used to manage solitary or multiple brain metastasis. This study aims to compare and validate Anisotropic Analytical Algorithm (AAA) and AcurosXB (AXB) algorithms of Eclipse Treatment Planning System (TPS) in RapidArc-based SRS plans of patients with solitary brain metastasis. Twenty patients with solitary brain metastasis who have been already treated with RapidArc SRS plans calculated using AAA plans were selected for this study.

View Article and Find Full Text PDF

Hsp104 is a large AAA+ molecular machine that can rescue proteins trapped in amorphous aggregates and stable amyloids by drawing substrate protein into its central pore. Recent cryo-EM studies image Hsp104 at high resolution. We used hydrogen exchange mass spectrometry analysis (HX MS) to resolve and characterize all of the functionally active and inactive elements of Hsp104, many not accessible to cryo-EM.

View Article and Find Full Text PDF

Objective: The purpose of this study is to develop a method to estimate the dose using amorphous silicon detector panel cone beam computed tomography (aSi-kVCBCT) for the OARs and targets in prostate radiotherapy and to compare with the actual planned dose. Methods: The aSi-kVCBCT is used widely in radiotherapy to verify the patient position before treatment. The advancement in aSi-kVCBCT combined with adaptive software allows us to verify the dose distribution in daily acquired CBCT images.

View Article and Find Full Text PDF

Cdc48/VCP Promotes Chromosome Morphogenesis by Releasing Condensin from Self-Entrapment in Chromatin.

Mol Cell

February 2018

Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada; Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada. Electronic address:

The morphological transformation of amorphous chromatin into distinct chromosomes is a hallmark of mitosis. To achieve this, chromatin must be compacted and remodeled by a ring-shaped enzyme complex known as condensin. However, the mechanistic basis underpinning condensin's role in chromosome remodeling has remained elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!