Introducing structural defects such as vacancies, nanoprecipitates, and dislocations is a proven means of reducing lattice thermal conductivity. However, these defects tend to be detrimental to carrier mobility. Consequently, the overall effects for enhancing ZT are often compromised. Indeed, developing strategies allowing for strong phonon scattering and high carrier mobility at the same time is a prime task in thermoelectrics. Here we present a high-performance thermoelectric system of Pb(Sb□)SeTe (□ = vacancy; y = 0-0.4) embedded with unique defect architecture. Given the mean free paths of phonons and electrons, we rationally integrate multiple defects that involve point defects, vacancy-driven dense dislocations, and Te-induced nanoprecipitates with different sizes and mass fluctuations. They collectively scatter thermal phonons in a wide range of frequencies to give lattice thermal conductivity of ∼0.4 W m K, which approaches to the amorphous limit. Remarkably, Te alloying increases a density of nanoprecipitates that affect mobility negligibly and impede phonons significantly, and it also decreases a density of dislocations that scatter both electrons and phonons heavily. As y is increased to 0.4, electron mobility is enhanced and lattice thermal conductivity is decreased simultaneously. As a result, Pb(Sb□)SeTe exhibits the highest ZT ∼ 1.5 at 823 K, which is attributed to the markedly enhanced power factor and reduced lattice thermal conductivity, in comparison with a ZT ∼ 0.9 for Pb(Sb□)Se that contains heavy dislocations only. These results highlight the potential of defect engineering to modulate electrical and thermal transport properties independently. We also reveal the defect formation mechanisms for dislocations and nanoprecipitates embedded in Pb(Sb□)SeTe by atomic resolution spherical aberration-corrected scanning transmission electron microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b05741DOI Listing

Publication Analysis

Top Keywords

lattice thermal
16
thermal conductivity
16
defect engineering
8
carrier mobility
8
thermal
6
dislocations
5
defect
4
engineering high-performance
4
high-performance n-type
4
n-type pbse
4

Similar Publications

Thermally Stable Anthracene-Based 2D/3D Heterostructures for Perovskite Solar Cells.

ACS Appl Mater Interfaces

December 2024

School of Materials Science and Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, Georgia 30332, United States.

Bulky organic cations are used in perovskite solar cells as a protective barrier against moisture, oxygen, and ion diffusion. However, bulky cations can introduce thermal instabilities by reacting with the near-surface of the 3D perovskite forming low-dimensional phases, including 2D perovskites, and by diffusing away from the surface into the film. This study explores the thermal stability of CsFAPbI 3D perovskite surfaces treated with two anthracene salts─anthracen-1-ylmethylammonium iodide (AMAI) and 2-(anthracen-1-yl)ethylammonium iodide (AEAI)─and compares them with the widely used phenethylammonium iodide (PEAI).

View Article and Find Full Text PDF

Optimization of Thermoelectric Performance in p-Type SnSe Crystals Through Localized Lattice Distortions and Band Convergence.

Adv Sci (Weinh)

December 2024

Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and optoelectronic engineering, Shenzhen University, Shenzhen, 518060, P. R. China.

Crystalline thermoelectric materials, especially SnSe crystals, have emerged as promising candidates for power generation and electronic cooling. In this study, significant enhancement in ZT is achieved through the combined effects of lattice distortions and band convergence in multiple electronic valence bands. Density functional theory (DFT) calculations demonstrate that cation vacancies together with Pb substitutional doping promote the band convergence and increase the density of states (DOS) near the Fermi surface of SnSe, leading to a notable increase in the Seebeck coefficient (S).

View Article and Find Full Text PDF

Ferroelectric field-effect transistors (FeFETs) commonly utilize traditional oxide ferroelectric materials for their strong remanent polarization. Yet, integrating them with the standard complementary metal oxide semiconductor (CMOS) process is challenging due to the need for lattice matching and the high-temperature rapid thermal annealing process, which are not always compatible with CMOS fabrication. However, the advent of the ferroelectric semiconductor α-InSe offers a compelling solution to these challenges.

View Article and Find Full Text PDF

Critical Nematic Phase with Pseudogaplike Behavior in Twisted Bilayers.

Phys Rev Lett

December 2024

School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA.

The crystallographic restriction theorem constrains two-dimensional nematicity to display either Ising (Z_{2}) or three-state-Potts (Z_{3}) critical behaviors, both of which are dominated by amplitude fluctuations. Here, we use group theory and microscopic modeling to show that this constraint is circumvented in a 30°-twisted hexagonal bilayer due to its emergent quasicrystalline symmetries. We find a critical phase dominated by phase fluctuations of a Z_{6} nematic order parameter and bounded by two Berezinskii-Kosterlitz-Thouless (BKT) transitions, which displays only quasi-long-range nematic order.

View Article and Find Full Text PDF

Context: In the context of biomaterials, triethylene glycol dimethacrylate (TEGDMA) is a widely used monomer in dental resins due to its favorable mechanical properties and ease of polymerization. However, improving its structural stability and enhancing its performance in biological applications remain crucial goals. This study examines the impact of incorporating gold (Au) nanoparticles into the TEGDMA matrix, focusing on their potential to improve mechanical, thermal, and optical properties for biomedical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!