We use X-ray-induced photochemistry, which is well known to cause changes in a number of systems, to reduce Hg(II) to Hg(0) in frozen aqueous solution with added glycerol maintained at 10 K. X-ray absorption spectroscopy was used to monitor the extent of the reaction and to characterize the species. An analysis of the extended X-ray absorption fine structure (EXAFS) of the photochemical product indicated a nearly monatomic Hg(0) species bound only by long, weak bonds to oxygens at ∼3.5 Å. The results of the EXAFS analysis agree quantitatively with the results of density functional theory calculations using the meta-GGA approximation with the M11-L functional. This is the first structural characterization of nearly monatomic Hg(0) bound by hard ligands similar to those expected in aqueous environmental systems. We conclude that Hg(0) is expected to exist in solution as a nearly monatomic entity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.8b00694 | DOI Listing |
Inorg Chem
July 2018
Molecular and Environmental Sciences Research Group, Department of Geological Sciences , University of Saskatchewan, Saskatoon , Saskatchewan S7N 5E2 , Canada.
We use X-ray-induced photochemistry, which is well known to cause changes in a number of systems, to reduce Hg(II) to Hg(0) in frozen aqueous solution with added glycerol maintained at 10 K. X-ray absorption spectroscopy was used to monitor the extent of the reaction and to characterize the species. An analysis of the extended X-ray absorption fine structure (EXAFS) of the photochemical product indicated a nearly monatomic Hg(0) species bound only by long, weak bonds to oxygens at ∼3.
View Article and Find Full Text PDFEnviron Sci Technol
May 2009
Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research (IOW), Seestrasse 15, D-18119 Rostock-Warnemünde, Germany.
Mercury is a priority pollutant as its mobility between the hydrosphere and the atmosphere threatens the biosphere globally. The air-water gas transfer of elemental mercury (Hg0) is controlled by its diffusion through the water-side boundary layer and thus by its diffusion coefficient, D(Hg), the value of which, however, has not been established. Here, the diffusion of Hg0 in water was modeled by molecular dynamics (MD) simulation and the diffusion coefficient subsequently determined.
View Article and Find Full Text PDFChemistry
July 2003
Inorganic Synthesis Laboratory, Department of Chemistry, Moscow State University, Leninskie Gory 1/3, 119992 Moscow, Russia.
Two new supramolecular complexes [Hg(6)As(4)](CrBr(6))Br (1) and [Hg(6)As(4)](FeBr(6))Hg(0.6) (2) have been prepared by the standard ampoule technique and their crystal structures determined. Both crystallize in the cubic space group Pa$\bar 3$ with the unit cell parameter a=12.
View Article and Find Full Text PDFAppl Environ Microbiol
April 1998
Department of Microbiology, University of Georgia, Athens 30602-2605, USA.
We used metalloregulated luciferase reporter fusions and spectroscopic quantification of soluble Hg(II) to determine that the hydroperoxidase-catalase, KatG, of Escherichia coli can oxidize monatomic elemental mercury vapor, Hg(0), to the water-soluble, ionic form, Hg(II). A strain with a mutation in katG and a strain overproducing KatG were used to demonstrate that the amount of Hg(II) formed is proportional to the catalase activity. Hg(0) oxidation was much decreased in stationary-phase cells of a strain lacking KatG, suggesting that the monofunctional hydroperoxidase KatE is less effective at this reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!