AI Article Synopsis

Article Abstract

The giant kelp Macrocystis pyrifera forms subtidal forests on shallow reefs in temperate regions of the world. It is one of the fastest-growing multicellular autotrophs on Earth and its high productivity supports diverse marine food webs. In 2008, we published a method for estimating biomass and net primary production (NPP) of giant kelp along with five years of data, to provide a more integrated measure of NPP than those yielded by previous methods. Our method combines monthly field measurements of standing crop and loss rates with a model of kelp biomass dynamics to estimate instantaneous mass-specific growth rates and NPP for each season of each year. We have since improved our approach to account for several previously unresolved sources of biomass loss. These improvements have led to a near doubling of our prior estimates of growth and NPP. At our site with the most persistent stand of giant kelp, NPP averages ~5.2 kg dry mass·m ·yr and results from the rapid growth (~3.5% per d) of a relatively small standing biomass (~0.4 kg dry mass/m on average) that turns over ~12 times annually. Here we provide revised estimates of seasonal biomass, growth, and NPP for the five years covered by our previous publication (2002-2006), along with more than a decade of additional data (2007-2017). We also present updated relationships for predicting giant kelp biomass and NPP from much more easily obtained measurements of frond density. These data can be used to understand the mechanisms that drive variation in giant kelp NPP at a wide range of temporal scales. No copyright or proprietary restrictions are associated with the use of this data set other than citation of this Data Paper.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.2440DOI Listing

Publication Analysis

Top Keywords

giant kelp
20
net primary
8
primary production
8
standing crop
8
macrocystis pyrifera
8
npp
8
kelp biomass
8
growth npp
8
kelp npp
8
kelp
6

Similar Publications

Assessment of the Chemical Diversity and Functional Properties of Secondary Metabolites from the Marine Fungus .

J Fungi (Basel)

December 2024

Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile.

Natural compounds derived from microorganisms, especially those with antioxidant and anticancer properties, are gaining attention for their potential applications in biomedical, cosmetic, and food industries. Marine fungi, such as , are particularly promising due to their ability to produce bioactive metabolites through the degradation of marine algal polysaccharides. This study investigates the metabolic diversity of grown on different carbon sources: glucose, spp.

View Article and Find Full Text PDF

Objective: The primary objective of these studies was to evaluate the potential of a serum containing Macrocystis pyrifera ferment (MPF-Serum) to both strengthen the barrier of intact skin and enhance barrier recovery after a non-ablative laser procedure or glycolic acid chemical peel.

Methods: Two whole-face clinical trials and three split-face, randomized, controlled clinical trials were conducted in women aged 31 to 65 years. The effect of MPF-Serum on barrier integrity and strength was assessed by transepidermal water loss measurement before and after controlled tape-stripping experiments and in-clinic 70% glycolic acid peel and non-ablative laser procedures.

View Article and Find Full Text PDF

Population genomics reveals strong impacts of genetic drift without purging and guides conservation of bull and giant kelp.

Curr Biol

January 2025

University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada. Electronic address:

Kelp forests are declining in many parts of the northeast Pacific. In small populations, genetic drift can reduce adaptive variation and increase fixation of recessive deleterious alleles, but natural selection may purge harmful variants. To understand evolutionary dynamics and inform restoration strategies, we investigated genetic structure and the outcomes of genetic drift and purging by sequencing the genomes of 429 bull kelp (Nereocystis luetkeana) and 211 giant kelp (Macrocystis sp.

View Article and Find Full Text PDF

In Vitro Bioaccessibility of Edible Seaweed Proteins from the Chilean Coast and Proteins from the Novel Seaweed-Derived Mycoprotein.

Molecules

January 2025

Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Santiago 8330111, Chile.

Seaweed biomass is globally underutilized as a source of proteins despite its nutritional potential, with much of its use focused on hydrocolloid extraction. This study evaluated the nutritional quality and digestibility of protein and amino acids from two brown seaweeds ( spp. and ), one green seaweed ( spp.

View Article and Find Full Text PDF

In many multicellular organisms, sexual development is not determined by XX/XY or ZW/ZZ systems but by U/V sex chromosomes. In U/V systems, sex determination occurs in the haploid phase, with U chromosomes in females and V chromosomes in males. Here, we explore several male, female, and partially sex-reversed male lines of giant kelp to decipher how U/V sex chromosomes and autosomes initiate male versus female development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!