In strong plasmon-exciton coupling, a surface plasmon mode is coupled to an array of localized emitters to yield new hybrid light-matter states (plexcitons), whose properties may in principle be controlled via modification of the arrangement of emitters. We show that plasmon modes are strongly coupled to synthetic light-harvesting maquette proteins, and that the coupling can be controlled via alteration of the protein structure. For maquettes with a single chlorin binding site, the exciton energy (2.06 ± 0.07 eV) is close to the expected energy of the Qy transition. However, for maquettes containing two chlorin binding sites that are collinear in the field direction, an exciton energy of 2.20 ± 0.01 eV is obtained, intermediate between the energies of the Qx and Qy transitions of the chlorin. This observation is attributed to strong coupling of the LSPR to an H-dimer state not observed under weak coupling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044288 | PMC |
http://dx.doi.org/10.1039/c8nr02144a | DOI Listing |
Biomater Sci
January 2025
School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China.
Photodynamic therapy (PDT), utilizing a photosensitizer (PS) to induce tumor cell death, is an effective modality for cancer treatment. PS-peptide conjugates have recently demonstrated remarkable antitumor potential in preclinical trials. However, the limited cell membrane binding affinity and rapid systemic clearance have hindered their transition to clinical applications.
View Article and Find Full Text PDFBiomaterials
January 2025
Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, PR China.
Sonodynamic therapy (SDT) is an efficient non-invasive strategy for treating breast cancer. However, the therapeutic efficacy of SDT is greatly limited by various defense mechanisms in the tumor microenvironment, particularly the overexpression of B-cell lymphoma-2 (Bcl-2). In this study, based on drug self-delivery systems, a carrier-free ultrasound-responsive polyphenol nanonetwork (GTC) was developed to enhance SDT by inhibiting Bcl-2.
View Article and Find Full Text PDFJ Med Chem
January 2025
Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Carbonic anhydrases (CAs) IX and XII are crucial for the survival and metastasis of solid tumors under hypoxic conditions. We designed compounds -, integrating triazole and benzenesulfonamide scaffolds known for inhibiting tumor-associated CAs IX/XII. Initial synthesis included compounds -, followed by diversification with small hydrophobic groups (-) and hydrophilic heterocyclic secondary amines (-).
View Article and Find Full Text PDFBMC Biol
January 2025
School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK.
Background: The rumen fluke, Calicophoron daubneyi, is the major paramphistome species infecting ruminants within Europe. Adult flukes reside within the rumen where they are in direct contact with a unique collection of microorganisms. Here, we report a 1.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Zhejiang University, Department of Chemistry, CHINA.
Ruthenium dioxide (RuO2) is a benchmark electrocatalyst for proton exchange membrane water electrolyzers (PEMWE), but its stability during the oxygen evolution reaction (OER) is often compromised by lattice oxygen involvement and metal dissolution. Despite that the typical synthesis of RuO2 produces chloride residues, the underlying function of chloride have not well investigated. In this study, we synthesized chlorine-containing RuO2 (RuO2-Cl) and pure RuO2 catalysts with similar morphology and crystallinity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!