The impact of presynaptic transmitter release site organization on synaptic function has been a vibrant area of research for synaptic physiologists. Because there is a highly nonlinear relationship between presynaptic calcium influx and subsequent neurotransmitter release at synapses, the organization and density of calcium sources (voltage-gated calcium channels [VGCCs]) relative to calcium sensors located on synaptic vesicles is predicted to play a major role in shaping the dynamics of neurotransmitter release at a synapse. Here we review the history of structure-function studies within transmitter release sites at the neuromuscular junction across three model preparations in an effort to discern the relationship between VGCC organization and synaptic function, and whether that organizational structure imparts evolutionary advantages for each species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/syn.22057 | DOI Listing |
Neurons require high amounts energy, and mitochondria help to fulfill this requirement. Dysfunc-tional mitochondria trigger problems in various neuronal tasks. Using the neuromuscular junction (NMJ) as a model synapse, we previously reported that Mitochondrial Complex I (MCI) subunits were required for maintaining NMJ function and growth.
View Article and Find Full Text PDFBackground: Bridge-like lipid transfer proteins (BLTPs) mediate bulk lipid transport at membrane contact sites. Mutations in BLTPs are linked to both early-onset neurodevelopmental and later-onset neurodegenerative diseases, including movement disorders. The tissue specificity and temporal requirements of BLTPs in disease pathogenesis remain poorly understood.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA.
Aging disrupts multiple homeostatic processes, including autophagy, a cellular process for the recycling and degradation of defective cytoplasmic structures. Acute treatment with the autophagy inhibitor chloroquine blunts the maximal forces generated by the diaphragm muscle, but the mechanisms underlying neuromuscular dysfunction in old age remain poorly understood. We hypothesized that chloroquine treatment increases the presynaptic retention of the styryl dye FM 4-64 following high-frequency nerve stimulation, consistent with the accumulation of unprocessed bulk endosomes.
View Article and Find Full Text PDFPflugers Arch
January 2025
Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.
Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.
View Article and Find Full Text PDFObjectives: The current gold standard for immunofluorescent (IF) visualization of neuromuscular junctions (NMJs) in muscle utilizes frozen tissue sections with fluorescent conjugated antibodies to demarcate neurons and IF alpha-bungarotoxin (α-BTX) to demarcate motor endplates. Frozen tissue sectioning comes with inherent inescapable limitations, including cryosectioning artifact and limited sample shelf-life. However, a parallel approach to identify NMJs in paraffin-embedded tissue sections has not been previously described.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!